A combination of molecular dynamics (MD) and density functional theory (DFT) calculations were used to study the hydration structures of K+ and Na+ ions under the confinement of 18-crown-6 in order to identify t...A combination of molecular dynamics (MD) and density functional theory (DFT) calculations were used to study the hydration structures of K+ and Na+ ions under the confinement of 18-crown-6 in order to identify the role of water in the selectivity of 18-crown-6 towards K+.The radial distribution functions,coordination num-bers,orientation structures and interaction energies were analyzed to investigate the hydration of K+ and Na+ in 18-crown-6/cation complexes.All calculations of K+ and Na+ in bulk water were also conducted for comparison.The simulation results show that the orientation distributions of the water molecules in the first coordination shell of K+ are more sensitive to the confinement of 18-crown-6 than those of Na+.It is more favorable to confine a K+ in 18-crown-6 than a Na+ in terms of interaction energy.Good agreement is obtained between MD results and DFT results.展开更多
基金Supported by the National Natural Science Foundation of China (20706029) the National Basic Research Program of China (2009CB623407 2009CB219902) Jiangsu Applied Chemistry and Materials Graduate Center for Innovation and Academic Communication foundation (2010ACMC03)
文摘A combination of molecular dynamics (MD) and density functional theory (DFT) calculations were used to study the hydration structures of K+ and Na+ ions under the confinement of 18-crown-6 in order to identify the role of water in the selectivity of 18-crown-6 towards K+.The radial distribution functions,coordination num-bers,orientation structures and interaction energies were analyzed to investigate the hydration of K+ and Na+ in 18-crown-6/cation complexes.All calculations of K+ and Na+ in bulk water were also conducted for comparison.The simulation results show that the orientation distributions of the water molecules in the first coordination shell of K+ are more sensitive to the confinement of 18-crown-6 than those of Na+.It is more favorable to confine a K+ in 18-crown-6 than a Na+ in terms of interaction energy.Good agreement is obtained between MD results and DFT results.