Current distribution in a drained aluminum reduction cell is critical due to its influence on the current efficiency, electrolysis stability, anodes and cathodes integrity. A finite element model was developed to simu...Current distribution in a drained aluminum reduction cell is critical due to its influence on the current efficiency, electrolysis stability, anodes and cathodes integrity. A finite element model was developed to simulate the electric field in a 75 kA drained aluminum reduction cell. The current distribution and influences of the cathode inclination angle and anode-cathode distance (ACD) were studied. The results show that relatively large horizontal current density appears in the aluminum film, and the maximum value reaches 600 kA/m2. As the cathode inclination angle increases from 2° to 15°, the maximum current density of the metal pad increases by 15%, while the maximum current density of the aluminum-wettable coating layer decreases by 27%. The influence of the ACD on the current distribution is not obvious.展开更多
The system of mixture of single lane and double lane is studied by a cellular automata model, which is developed by us based on the Nagel and Schreckenberg's models. We justify that the model can reach a stable state...The system of mixture of single lane and double lane is studied by a cellular automata model, which is developed by us based on the Nagel and Schreckenberg's models. We justify that the model can reach a stable states quickly. The density distributions of the stable state is presented for several cases, which illustrate the manner of the congestion. The relationship between the outflow rate and the total number of vehicles and that between the outflow rate and the density just before the bottleneck are both given. Comparing with the relationship that occurring in the granular flow, we conclude that the transition from the free traffic flow to the congested traffic flow can also be attributed to the abrupt variation through unstable flow state, which can naturally explain the discontinuities and the complex time variation behavior observed in the traffic flow experiments.展开更多
In this paper, a new evaluation method of probabilistic TTC based on SVSR calculation is developed through a hierarchical simulation. A smooth technology based on the non-parametric kernel estimator is adapted to obta...In this paper, a new evaluation method of probabilistic TTC based on SVSR calculation is developed through a hierarchical simulation. A smooth technology based on the non-parametric kernel estimator is adapted to obtain the time-dependent probabilistic density function of the feeder-head load data. In order to describe possible operating change directions of the operating point, the original hyper-cone-like(HCL) model is constructed to consider the probabilistic distribution function(PDF) extracted from feeder-head load data to replace the simple Normal Distribution model and the uncertain generator outputs. To realize the fast TTC calculation of the current operating point in random conditions, a sub-hyper-cone-like(SHCL) model in full power injections space is proposed, which is a similarity transformation of the original one.展开更多
In this paper, firstly, a basic nonlinear magnetic network model considering iron saturations is proposed for a three-phase 12-stator-slot/10-rotor-pole flux-switching permanent magnet(FSPM) machine. This model is bui...In this paper, firstly, a basic nonlinear magnetic network model considering iron saturations is proposed for a three-phase 12-stator-slot/10-rotor-pole flux-switching permanent magnet(FSPM) machine. This model is built under cylindrical coordinates and enables the open-circuit air-gap flux-density distributions, phase permanent magnet(PM) flux-linkage, and electromotive-force(EMF) to be predicted with acceptable accuracy. However, large discrepancies are found in the predictions of armature inductances. Then, the basic model is modified by taking into account the localized saturation effect. As a result, the electromagnetic performance can be predicted more accurately, especially for the air-gap flux-density distributions. Furthermore, two improved models are proposed by adding bypass-bridge branches in stator network, to enhance the calculating accuracy of both saturated and unsaturated armature inductances. Finally, the predicted results from the four magnetic network models are validated by both 2D finite element analysis(FEA) and experimental measurements on a machine prototype. Overall, comparisons indicate that the model with bypass-bridge branches between stator teeth and back irons exhibits best performances.展开更多
The Tibetan Plateau(TP)and Arctic permafrost constitute two large reservoirs of organic carbon,but processes which control carbon accumulation within the surface soil layer of these areas would differ due to the inter...The Tibetan Plateau(TP)and Arctic permafrost constitute two large reservoirs of organic carbon,but processes which control carbon accumulation within the surface soil layer of these areas would differ due to the interplay of climate,soil and vegetation type.Here,we synthesized currently available soil carbon data to show that mean organic carbon density in the topsoil(0-10 cm)in TP grassland(3.12±0.52 kg C m^(-2))is less than half of that in Arctic tundra(6.70±1.94 kg C m^(-2)).Such difference is primarily attributed to their difference in radiocarbon-inferred soil carbon turnover times(547 years for TP grassland versus 1609 years for Arctic tundra)rather than to their marginal difference in topsoil carbon inputs.Our findings highlight the importance of improving regional-specific soil carbon turnover and its controlling mechanisms across permafrost affected zones in ecosystem models to fully represent carbon-climate feedback.展开更多
In this paper, the effect of surface roughness on sealing clearance, pressure distribution, friction torque and leakage is studied by the thermal-elasto-hydrodynamic mixed lubrication model. A convergent nominal clear...In this paper, the effect of surface roughness on sealing clearance, pressure distribution, friction torque and leakage is studied by the thermal-elasto-hydrodynamic mixed lubrication model. A convergent nominal clearance is formed by the pressure de- formation and thermal deformation of the seal faces. This causes more serious wear in the inner side than that of the outer side of the contact area. Mass leakage increases with the growing of the surface roughness. The temperature and thermal defor- mation on the seal surface increases substantially if the roughness is reduced. The contact mechanical seals have consistent performance when the standard deviation of surface roughness is approximately 0.2 pm. In order to validate the theoretical analysis model, a method combining the measurement of three-dimensioned profile and Raman spectrum is proposed.展开更多
In this paper, several structures for multilayer Cu(In1-xGax) Se2 (CIGS) thin film solar cells are proposed to achieve high conversion efficiency. All of the modeling and simulations were based on the actual data of e...In this paper, several structures for multilayer Cu(In1-xGax) Se2 (CIGS) thin film solar cells are proposed to achieve high conversion efficiency. All of the modeling and simulations were based on the actual data of experimentally produced CIGS cells reported in the literature. In standard CIGS cells with a single absorber layer, the effects of acceptor density and Ga content on device performance were studied, and then optimized for maximum conversion efficiency. The same procedure was performed for cells with two and three sectioned CIGS absorber layers in which Cu and/or Ga contents were varied within each consecutive section. This produces an internal additional electric field within the absorber layer, which resulted in an increase in carrier collection for longer wavelength photons, and hence, improvement in the conversion efficiency of the cell. An increase of approximately 3% in efficiency is predicted for cells with two layer absorbers. For multilayer cells in which Cu and Ga distribution were stepped simultaneously, the improvement could be approximately 3.5%. This improvement is due to; enhanced carrier collection for longer-wavelength photons, and reduced recombination at the heterojunction and back regions of the cell. These results are confirmed by the physics of the cells.展开更多
In the present paper, the elastic scattering of6 Li + 209 Bi system is reanalyzed by using the double folding model (DFM) at energies near the Coulomb barrier (ELab=29.9 and 32.8 MeV). With this goal, a new density di...In the present paper, the elastic scattering of6 Li + 209 Bi system is reanalyzed by using the double folding model (DFM) at energies near the Coulomb barrier (ELab=29.9 and 32.8 MeV). With this goal, a new density distribution of6 Li nucleus, the no-core full configuration (NCFC) density distribution (DD), is used to obtain the real potentials in DFM calculations. The NCFC DD results are compared with the results of both gaussian shape (GS) DD and an earlier study as well as the experimental data. This comparison provides information about the similarities and differences of the models used in calculations.展开更多
Horizontal density variation is a structural phenomenon of non-veneer wood composites. The variation and distribution characteristics of horizontal density have impacts on the products properties. In this study, venee...Horizontal density variation is a structural phenomenon of non-veneer wood composites. The variation and distribution characteristics of horizontal density have impacts on the products properties. In this study, veneer strip simulated flake boards with 4 kinds of density distribution were made using a mat model. The density variation of the modeled mats was discussed, as well as the relationship between sample size and density variation. The effects of density and density distribution of non-veneer composites on the internal bond strength were analyzed. Result shows that the horizontal density of random formed particleboard follows normal distribution. Density has remarkable influence on internal bond strength (IB). Increasing density helps to improve IB at lower density stage, but has negative impacts on IB at higher density stage. Density variation between testing specimens depends on their sizes. Properly increasing specimen size can decrease the variation of the IBs.展开更多
基金Project(2005CB623703) supported by the National Basic Research Program of China
文摘Current distribution in a drained aluminum reduction cell is critical due to its influence on the current efficiency, electrolysis stability, anodes and cathodes integrity. A finite element model was developed to simulate the electric field in a 75 kA drained aluminum reduction cell. The current distribution and influences of the cathode inclination angle and anode-cathode distance (ACD) were studied. The results show that relatively large horizontal current density appears in the aluminum film, and the maximum value reaches 600 kA/m2. As the cathode inclination angle increases from 2° to 15°, the maximum current density of the metal pad increases by 15%, while the maximum current density of the aluminum-wettable coating layer decreases by 27%. The influence of the ACD on the current distribution is not obvious.
基金supported by National Natural Science Foundation of China under Grant Nos. 10674157 and 10875166
文摘The system of mixture of single lane and double lane is studied by a cellular automata model, which is developed by us based on the Nagel and Schreckenberg's models. We justify that the model can reach a stable states quickly. The density distributions of the stable state is presented for several cases, which illustrate the manner of the congestion. The relationship between the outflow rate and the total number of vehicles and that between the outflow rate and the density just before the bottleneck are both given. Comparing with the relationship that occurring in the granular flow, we conclude that the transition from the free traffic flow to the congested traffic flow can also be attributed to the abrupt variation through unstable flow state, which can naturally explain the discontinuities and the complex time variation behavior observed in the traffic flow experiments.
基金supported the National Hi-Tech Research and Development Program of China(Grant No.2015AA050403)the National Natural Science Foundation of China(Grant Nos.51277128+7 种基金51407125&51361135704)Statement of Collaboration between University of VictoriaCanadaTianjin UniversityChinaand"131"Talent&Innovative Team of Tianjin CityFundamental and Perspective Project of State Grid Corporation of China-"Study on the Energy Internet Technology Framework"Science and Technology Project of State Grid Corporation of China(Grant No.5217L0150004)
文摘In this paper, a new evaluation method of probabilistic TTC based on SVSR calculation is developed through a hierarchical simulation. A smooth technology based on the non-parametric kernel estimator is adapted to obtain the time-dependent probabilistic density function of the feeder-head load data. In order to describe possible operating change directions of the operating point, the original hyper-cone-like(HCL) model is constructed to consider the probabilistic distribution function(PDF) extracted from feeder-head load data to replace the simple Normal Distribution model and the uncertain generator outputs. To realize the fast TTC calculation of the current operating point in random conditions, a sub-hyper-cone-like(SHCL) model in full power injections space is proposed, which is a similarity transformation of the original one.
基金supported by the National Basic Research Program of China(“973”Project)(Grant No.2013CB035603)the National Natural Science Foundation of China(Grant Nos.51177013&51322705)+3 种基金Qing Lan Project of Jiangsu ProvinceSix Talents Climax Project of Jiangsu Province(Grant No.2011-ZBZZ-036)Technology R&D Program of Jiangsu Province(Grant Nos.BE2012100&BY2012195)“333 Talents Project”of Jiangsu Province
文摘In this paper, firstly, a basic nonlinear magnetic network model considering iron saturations is proposed for a three-phase 12-stator-slot/10-rotor-pole flux-switching permanent magnet(FSPM) machine. This model is built under cylindrical coordinates and enables the open-circuit air-gap flux-density distributions, phase permanent magnet(PM) flux-linkage, and electromotive-force(EMF) to be predicted with acceptable accuracy. However, large discrepancies are found in the predictions of armature inductances. Then, the basic model is modified by taking into account the localized saturation effect. As a result, the electromagnetic performance can be predicted more accurately, especially for the air-gap flux-density distributions. Furthermore, two improved models are proposed by adding bypass-bridge branches in stator network, to enhance the calculating accuracy of both saturated and unsaturated armature inductances. Finally, the predicted results from the four magnetic network models are validated by both 2D finite element analysis(FEA) and experimental measurements on a machine prototype. Overall, comparisons indicate that the model with bypass-bridge branches between stator teeth and back irons exhibits best performances.
基金This work was supported by Preliminary Research on Three Poles Environment and Climate Change(2019YFC1509103)the National Natural Science Foundation of China(41861134036 and 41922004)+1 种基金the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0606)the Strategic Priority Research Program(A)of the Chinese Academy of Sciences(XDA19070303 and XDA20050101).
文摘The Tibetan Plateau(TP)and Arctic permafrost constitute two large reservoirs of organic carbon,but processes which control carbon accumulation within the surface soil layer of these areas would differ due to the interplay of climate,soil and vegetation type.Here,we synthesized currently available soil carbon data to show that mean organic carbon density in the topsoil(0-10 cm)in TP grassland(3.12±0.52 kg C m^(-2))is less than half of that in Arctic tundra(6.70±1.94 kg C m^(-2)).Such difference is primarily attributed to their difference in radiocarbon-inferred soil carbon turnover times(547 years for TP grassland versus 1609 years for Arctic tundra)rather than to their marginal difference in topsoil carbon inputs.Our findings highlight the importance of improving regional-specific soil carbon turnover and its controlling mechanisms across permafrost affected zones in ecosystem models to fully represent carbon-climate feedback.
基金supported by the National Basic Research Program of China(Grant No.2009CB724304)the National Natural Science Foundation of China(Grant No.51275268)the National Science and Technology Support Plan(Grant No.2011BAF09B05)
文摘In this paper, the effect of surface roughness on sealing clearance, pressure distribution, friction torque and leakage is studied by the thermal-elasto-hydrodynamic mixed lubrication model. A convergent nominal clearance is formed by the pressure de- formation and thermal deformation of the seal faces. This causes more serious wear in the inner side than that of the outer side of the contact area. Mass leakage increases with the growing of the surface roughness. The temperature and thermal defor- mation on the seal surface increases substantially if the roughness is reduced. The contact mechanical seals have consistent performance when the standard deviation of surface roughness is approximately 0.2 pm. In order to validate the theoretical analysis model, a method combining the measurement of three-dimensioned profile and Raman spectrum is proposed.
文摘In this paper, several structures for multilayer Cu(In1-xGax) Se2 (CIGS) thin film solar cells are proposed to achieve high conversion efficiency. All of the modeling and simulations were based on the actual data of experimentally produced CIGS cells reported in the literature. In standard CIGS cells with a single absorber layer, the effects of acceptor density and Ga content on device performance were studied, and then optimized for maximum conversion efficiency. The same procedure was performed for cells with two and three sectioned CIGS absorber layers in which Cu and/or Ga contents were varied within each consecutive section. This produces an internal additional electric field within the absorber layer, which resulted in an increase in carrier collection for longer wavelength photons, and hence, improvement in the conversion efficiency of the cell. An increase of approximately 3% in efficiency is predicted for cells with two layer absorbers. For multilayer cells in which Cu and Ga distribution were stepped simultaneously, the improvement could be approximately 3.5%. This improvement is due to; enhanced carrier collection for longer-wavelength photons, and reduced recombination at the heterojunction and back regions of the cell. These results are confirmed by the physics of the cells.
文摘In the present paper, the elastic scattering of6 Li + 209 Bi system is reanalyzed by using the double folding model (DFM) at energies near the Coulomb barrier (ELab=29.9 and 32.8 MeV). With this goal, a new density distribution of6 Li nucleus, the no-core full configuration (NCFC) density distribution (DD), is used to obtain the real potentials in DFM calculations. The NCFC DD results are compared with the results of both gaussian shape (GS) DD and an earlier study as well as the experimental data. This comparison provides information about the similarities and differences of the models used in calculations.
文摘Horizontal density variation is a structural phenomenon of non-veneer wood composites. The variation and distribution characteristics of horizontal density have impacts on the products properties. In this study, veneer strip simulated flake boards with 4 kinds of density distribution were made using a mat model. The density variation of the modeled mats was discussed, as well as the relationship between sample size and density variation. The effects of density and density distribution of non-veneer composites on the internal bond strength were analyzed. Result shows that the horizontal density of random formed particleboard follows normal distribution. Density has remarkable influence on internal bond strength (IB). Increasing density helps to improve IB at lower density stage, but has negative impacts on IB at higher density stage. Density variation between testing specimens depends on their sizes. Properly increasing specimen size can decrease the variation of the IBs.