针对机载激光雷达建筑物点云提取过程中自动化提取困难,以及提取后的建筑物单体化过程烦琐等问题,提出一种基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的机载雷达建筑物点云提...针对机载激光雷达建筑物点云提取过程中自动化提取困难,以及提取后的建筑物单体化过程烦琐等问题,提出一种基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的机载雷达建筑物点云提取与单体化的方法。该方法对预处理后的点云数据基于DBSCAN算法进行去噪与初步的提取,通过三维密度聚类,将建筑物的点云进行提取与自动单体化。根据建筑物点云密度的特点,进行二维的密度聚类,结合数字正射影像图(digital orthophoto map,DOM)进行点云分割。最后将处理后的点云数据进行优化处理,并将建筑物单体化簇类进行提取,得到单体化建筑物点云。结果表明:提取的建筑物点云数量正确率为97.36%,轮廓边长的中误差为0.077,可以有效地提取出建筑物点云并将其单体化。展开更多
为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点...为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点及其满足核心点条件的邻域数据做局部聚类更新,降低聚类更新的时间复杂度,实现对空间数据流的在线聚类.OLDStream算法具有快速处理大规模空间数据流、实时获取全局任意形状的聚类簇结果、对数据流的输入顺序不敏感、并能发现孤立点数据等优势.在真实数据和合成数据上的综合实验验证了算法的聚类效果、高效率性和较高的可伸缩性,同时实验结果的统计分析显示仅有4%的空间点消耗最坏运行时间,对每个空间点的平均聚类时间约为0.033ms.展开更多
在优化空间聚类算法的研究中,传统的K-means空间算法存在两个缺陷,其一是对空间对象的属性描述不全面,其二是对初始种子集选取敏感,容易陷入局部最优值,聚类结果不稳定。为了优化算法,引入适合空间对象的空间属性距离和基于最大维密度...在优化空间聚类算法的研究中,传统的K-means空间算法存在两个缺陷,其一是对空间对象的属性描述不全面,其二是对初始种子集选取敏感,容易陷入局部最优值,聚类结果不稳定。为了优化算法,引入适合空间对象的空间属性距离和基于最大维密度选择方案(Max-Dimension of Density Based Seeking,MDDBS)来改进K-means算法,提出利用最大维密度的全局优化空间聚类算法(Max-Dimension of Density Based Clustering,MDDBC),可从密度大的区域选取初始种子,同时又尽量将种子分散在数据空间。实验结果表明,改进方法可以很好消除聚类结果的波动性,同时更加客观地呈现空间对象的分布规律。展开更多
DP(Clustering by Fast Search and Find of Density Peaks)是一种新提出的基于局部密度和距离的聚类算法,具有能够发现任意形状的类簇、易于理解并且可以高效划分数据的优点。但是该算法无法处理单个类簇中同时存在多个密度峰值的情况...DP(Clustering by Fast Search and Find of Density Peaks)是一种新提出的基于局部密度和距离的聚类算法,具有能够发现任意形状的类簇、易于理解并且可以高效划分数据的优点。但是该算法无法处理单个类簇中同时存在多个密度峰值的情况,并且数据划分不稳定,容易导致连锁错误划分;当类簇间的密度差异较大时,其无法准确识别稀疏的类簇。为弥补以上不足,提出一种基于影响空间的稳健密度峰值聚类算法。该改进算法通过邻近数据计算局部密度,增强对小规模类簇的识别能力。为了提高数据划分的稳定性,引入了影响空间,并定义了一种新的对称关系,提出了一种新的分配策略。其通过计算目标数据与邻近数据的局部密度比值,并对影响空间进行加权,使算法能够处理具有多密度分布特征的数据。基于人工合成数据集和UCI数据集的模拟对比实验表明,提出的改进策略增强了算法对稀疏类簇的识别能力,提高了数据划分的稳定性,在NMI和Acc评价指标方面取得了较优的结果。展开更多
针对网格和密度方法的聚类算法存在效率和质量问题,给出了密度与栅格相结合的聚类挖掘算法,即基于密度和栅格的聚类算法DGCA(density and grid based clustering algorithm)。该算法首先将数据空间划分为栅格单元;然后把数据存储到栅格...针对网格和密度方法的聚类算法存在效率和质量问题,给出了密度与栅格相结合的聚类挖掘算法,即基于密度和栅格的聚类算法DGCA(density and grid based clustering algorithm)。该算法首先将数据空间划分为栅格单元;然后把数据存储到栅格单元中,利用DBSCAN密度聚类算法进行聚类挖掘;最后进行聚类合并和噪声点消除,并将局部聚类结果映射到全局聚类结果。实验通过人工数据样本集对该聚类算法进行理论上验证,表明了该算法在时间效率和聚类质量两方面都得到了提高。展开更多
[目的]供电部门记录的正确的拓扑信息有助于工作人员监测电网信息,分析故障,优化电网运行以满足低压配电台区精益化、智能化管理的需要。目前,各式新型用电设备及用户的加入使低压配电网络结构呈现出持续变化的特征,线路维护成本被大大...[目的]供电部门记录的正确的拓扑信息有助于工作人员监测电网信息,分析故障,优化电网运行以满足低压配电台区精益化、智能化管理的需要。目前,各式新型用电设备及用户的加入使低压配电网络结构呈现出持续变化的特征,线路维护成本被大大提高。[方法]为此,提出基于密度聚类的低压台区归属关系识别方法。首先,提取智能电表有效电压数据生成高维时序电压矩阵;其次,采用t分布随机近邻嵌入方法(t-distributed Stochastic Neighbor Embedding,t-SNE)对高维时序电压数据进行特征提取与降维;然后,应用基于数据密度的噪声应用空间聚类方法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)对降维后的数据进行聚类分析,实现低压用户台区归属信息的识别;最后,对海南省三亚市某台区实际数据进行分析,并将所提方法与其他主流的拓扑识别算法进行对比。[结果]分析结果表明所提方法能够达到95%以上的台区识别准确率,高于目前其他主流的拓扑信息识别方法。[结论]文章中的方法在解决此类问题上具有有效性与优势性,可以为实际工程应用提供参考,为低压台区拓扑信息识别领域提供不一样的研究思路。展开更多
文摘针对机载激光雷达建筑物点云提取过程中自动化提取困难,以及提取后的建筑物单体化过程烦琐等问题,提出一种基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的机载雷达建筑物点云提取与单体化的方法。该方法对预处理后的点云数据基于DBSCAN算法进行去噪与初步的提取,通过三维密度聚类,将建筑物的点云进行提取与自动单体化。根据建筑物点云密度的特点,进行二维的密度聚类,结合数字正射影像图(digital orthophoto map,DOM)进行点云分割。最后将处理后的点云数据进行优化处理,并将建筑物单体化簇类进行提取,得到单体化建筑物点云。结果表明:提取的建筑物点云数量正确率为97.36%,轮廓边长的中误差为0.077,可以有效地提取出建筑物点云并将其单体化。
文摘为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点及其满足核心点条件的邻域数据做局部聚类更新,降低聚类更新的时间复杂度,实现对空间数据流的在线聚类.OLDStream算法具有快速处理大规模空间数据流、实时获取全局任意形状的聚类簇结果、对数据流的输入顺序不敏感、并能发现孤立点数据等优势.在真实数据和合成数据上的综合实验验证了算法的聚类效果、高效率性和较高的可伸缩性,同时实验结果的统计分析显示仅有4%的空间点消耗最坏运行时间,对每个空间点的平均聚类时间约为0.033ms.
文摘在优化空间聚类算法的研究中,传统的K-means空间算法存在两个缺陷,其一是对空间对象的属性描述不全面,其二是对初始种子集选取敏感,容易陷入局部最优值,聚类结果不稳定。为了优化算法,引入适合空间对象的空间属性距离和基于最大维密度选择方案(Max-Dimension of Density Based Seeking,MDDBS)来改进K-means算法,提出利用最大维密度的全局优化空间聚类算法(Max-Dimension of Density Based Clustering,MDDBC),可从密度大的区域选取初始种子,同时又尽量将种子分散在数据空间。实验结果表明,改进方法可以很好消除聚类结果的波动性,同时更加客观地呈现空间对象的分布规律。
文摘DP(Clustering by Fast Search and Find of Density Peaks)是一种新提出的基于局部密度和距离的聚类算法,具有能够发现任意形状的类簇、易于理解并且可以高效划分数据的优点。但是该算法无法处理单个类簇中同时存在多个密度峰值的情况,并且数据划分不稳定,容易导致连锁错误划分;当类簇间的密度差异较大时,其无法准确识别稀疏的类簇。为弥补以上不足,提出一种基于影响空间的稳健密度峰值聚类算法。该改进算法通过邻近数据计算局部密度,增强对小规模类簇的识别能力。为了提高数据划分的稳定性,引入了影响空间,并定义了一种新的对称关系,提出了一种新的分配策略。其通过计算目标数据与邻近数据的局部密度比值,并对影响空间进行加权,使算法能够处理具有多密度分布特征的数据。基于人工合成数据集和UCI数据集的模拟对比实验表明,提出的改进策略增强了算法对稀疏类簇的识别能力,提高了数据划分的稳定性,在NMI和Acc评价指标方面取得了较优的结果。
文摘针对网格和密度方法的聚类算法存在效率和质量问题,给出了密度与栅格相结合的聚类挖掘算法,即基于密度和栅格的聚类算法DGCA(density and grid based clustering algorithm)。该算法首先将数据空间划分为栅格单元;然后把数据存储到栅格单元中,利用DBSCAN密度聚类算法进行聚类挖掘;最后进行聚类合并和噪声点消除,并将局部聚类结果映射到全局聚类结果。实验通过人工数据样本集对该聚类算法进行理论上验证,表明了该算法在时间效率和聚类质量两方面都得到了提高。
文摘[目的]供电部门记录的正确的拓扑信息有助于工作人员监测电网信息,分析故障,优化电网运行以满足低压配电台区精益化、智能化管理的需要。目前,各式新型用电设备及用户的加入使低压配电网络结构呈现出持续变化的特征,线路维护成本被大大提高。[方法]为此,提出基于密度聚类的低压台区归属关系识别方法。首先,提取智能电表有效电压数据生成高维时序电压矩阵;其次,采用t分布随机近邻嵌入方法(t-distributed Stochastic Neighbor Embedding,t-SNE)对高维时序电压数据进行特征提取与降维;然后,应用基于数据密度的噪声应用空间聚类方法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)对降维后的数据进行聚类分析,实现低压用户台区归属信息的识别;最后,对海南省三亚市某台区实际数据进行分析,并将所提方法与其他主流的拓扑识别算法进行对比。[结果]分析结果表明所提方法能够达到95%以上的台区识别准确率,高于目前其他主流的拓扑信息识别方法。[结论]文章中的方法在解决此类问题上具有有效性与优势性,可以为实际工程应用提供参考,为低压台区拓扑信息识别领域提供不一样的研究思路。