-
题名基于神经网络的EAST密度极限破裂预测
被引量:1
- 1
-
-
作者
陈俊杰
胡文慧
肖建元
郭笔豪
肖炳甲
-
机构
中国科学技术大学物理学院工程与应用物理系
中国科学院合肥物质科学研究院等离子体物理研究所
-
出处
《计算机系统应用》
2020年第11期21-28,共8页
-
基金
国家重点研发计划(2016YFA0400600,2016YFA0400601,2016YFA0400602)
国家自然科学基金(11775219,11575186)
中国科学院合肥物质科学研究院院长基金(YZJJ2020QN11)
-
文摘
为了对全超导托卡马克核聚变实验装置(EAST)密度极限破裂进行预测,根据密度极限破裂的基本特征从2014到2019年放电数据中筛选出972炮密度极限破裂炮,选取了13种诊断信号为特征作为输入,分别由多层感知机(MLP)和长短时记忆网络(LSTM)为模型、以破裂概率为模型输出建立破裂预测器对密度极限破裂进行预测实验.结果表明:对密度极限破裂炮,在不同的预警时间下,LSTM的成功预测率(95%)均高于MLP的成功预测率(85%);而对于非破裂炮,LSTM和MLP的错误预测率相近(8%).LSTM对密度极限破裂的预测性能较MLP有较大的提高.说明利用神经网络进行EAST密度极限破裂预测以及提高破裂避免和缓解系统响应性能的可行性.
-
关键词
托卡马克
密度极限破裂预测
MLP
LSTM
机器学习
-
Keywords
Tokamak
density limit disruption prediction
MLP
LSTM
machine learning
-
分类号
TP183
[自动化与计算机技术—控制理论与控制工程]
TL631.24
[核科学技术—核技术及应用]
-