The dynamic adsorption of possible intermediates on single-atom catalysts(SACs)under working condition plays a key role in the electrocatalytic performance by the oxygen evolution reaction(OER),and therefore the perfo...The dynamic adsorption of possible intermediates on single-atom catalysts(SACs)under working condition plays a key role in the electrocatalytic performance by the oxygen evolution reaction(OER),and therefore the performance of the dynamic adsorption should be fully considered in the theoretical screening of potential SACs.Based on density functional theory calculations,the OER performance of 27 types of C_(2)N-supported single transition metal atoms(TM@C_(2)N)is systematically investigated without and with considering the dynamic adsorption of possible intermediates.Without considering dynamic adsorption,only Rh@C_(2)N and Ni@C_(2)N are screened out as good catalysts.However,by further considering the dynamic adsorption configurations of possible intermediates,more promising TM@C_(2)N SACs including Fe(Co,Ni,Ru,Rh,Ir)@C_(2)N toward the OER are screened out.The presence of the intermediates(*HO,*O)on SACs could shift their d band center toward lower energy level,which makes the interaction between the adsorbate and SACs moderate and thus enhances their OER performance.The present work is instructive for further screening and designing of efficient single-atom catalysts for the oxygen evolution reaction.展开更多
Developing highly active alloy catalysts that surpass the performance of platinum group metals in the oxygen reduction reaction(ORR)is critical in electrocatalysis.Gold-based single-atom alloy(AuSAA)clusters are gaini...Developing highly active alloy catalysts that surpass the performance of platinum group metals in the oxygen reduction reaction(ORR)is critical in electrocatalysis.Gold-based single-atom alloy(AuSAA)clusters are gaining recognition as promising alternatives due to their potential for high activity.However,enhancing its activity of AuSAA clusters remains challenging due to limited insights into its actual active site in alkaline environments.Herein,we studied a variety of Au_(54)M_(1) SAA cluster catalysts and revealed the operando formed MO_(x)(OH)_(y) complex acts as the crucial active site for catalyzing the ORR under the basic solution condition.The observed volcano plot indicates that Au_(54)Co_(1),Au_(54)M_(1),and Au_(54)Ru_(1) clusters can be the optimal Au_(54)M_(1) SAA cluster catalysts for the ORR.Our findings offer new insights into the actual active sites of AuSAA cluster catalysts,which will inform rational catalyst design in experimental settings.展开更多
The electronic property of pyrite supercell containing As,Se,Te,Co or Ni hetero atoms were calculated using density functional theory(DFT),and the reactivities of pyrite with oxygen and xanthate were discussed by fr...The electronic property of pyrite supercell containing As,Se,Te,Co or Ni hetero atoms were calculated using density functional theory(DFT),and the reactivities of pyrite with oxygen and xanthate were discussed by frontier orbital methods.The cell volume expands due to the presence of impurity.Co and Ni mainly affect the bands near Fermi levels,while As mainly affects the shallow and deep valence bands,and Se and Te mainly affect the deep valence bands.Electronic density analysis suggests that there exists a strong covalent interaction between hetero atom and its surrounding atoms.By frontier orbital calculation,it is suggested that As,Co and Ni have greater influence on the HOMO and LUMO of pyrite than Se and Te.In addition,pyrite containing As,Co or Ni is easier to oxidize by oxygen than pyrite containing Se or Te,and pyrite containing Co or Ni has greater interaction with collector.These are in agreement with the observed pyrite practice.展开更多
The reactions of anionic zirconium oxide clusters ZrxOy- with C2H6 and C4H10 are investi-gated by a time of flight mass spectrometer coupled with a laser vaporization cluster source.Hydrogen containing products Zr2O5H...The reactions of anionic zirconium oxide clusters ZrxOy- with C2H6 and C4H10 are investi-gated by a time of flight mass spectrometer coupled with a laser vaporization cluster source.Hydrogen containing products Zr2O5H- and Zr3O7H- are observed after the reaction. Den-sity functional theory calculations indicate that the hydrogen abstraction is favorable in the reaction of Zr2O5- with C2H6, which supports that the observed Zr2O5H- and Zr3O7H- are due to hydrogen atom abstraction from the alkane molecules. This work shows a newpossible pathway in the reaction of zirconium oxide cluster anions with alkane molecules.展开更多
The process and mechanism of the ligand volume controlled Pd(PR3)2 (PR3=PH3, PMe3, and PtBu3) oxidative addition with aryl bromide were investigated, using density functional theory method with the conductor-like ...The process and mechanism of the ligand volume controlled Pd(PR3)2 (PR3=PH3, PMe3, and PtBu3) oxidative addition with aryl bromide were investigated, using density functional theory method with the conductor-like screening model. Association pathway and dissocia-tion pathway were investigated by the comparison of several energies. The cleavage energy of Pd(PR3)2 complex was calculated, as well as the oxidative addition reaction barrier energy of Pd(PR3)n (n=1,2) with aryl bromide in N,N-dimethylformamide solvent. This study proved that the ligands volume possessed a great impact on the mechanism of oxidative addition: less bulky ligand palladium associated with aryl bromide via two donor ligands,but larger bulky ligand palladium coordinated via monoligand.展开更多
The solvents and substituents of two similar fluorescent sensors for cyanide, 7-diethylamino- 3-formylcoumarin (sensor a) and 7-diethylamino-3-(2-nitrovinyl)coumarin (sensor b), are proposed to account for their...The solvents and substituents of two similar fluorescent sensors for cyanide, 7-diethylamino- 3-formylcoumarin (sensor a) and 7-diethylamino-3-(2-nitrovinyl)coumarin (sensor b), are proposed to account for their distinct sensing mechanisms and experimental phenomena. The time-dependent density functional theory has been applied to investigate the ground states and the first singlet excited electronic states of the sensor as well as their possible Michael reaction products with cyanide, with a view to monitoring their geometries and photophysieal properties. The theoretical study indicates that the protic water solvent could lead to final Michael addition product of sensor a in the ground state, while the aprotic acetonitrile solvent could lead to carbanion as the final product of sensor b. Furthermore, the Michael reaction product of sensor a has been proved to have a torsion structure in its first singlet excited state. Correspondingly, sensor b also has a torsion structure around the nitrovinyl moiety in its first singlet excited state, while not in its carbanion structure. This could explain the observed strong fluorescence for sensor a and the quenching fluorescence for the sensor b upon the addition of the cyanide anions in the relevant sensing mechanisms.展开更多
The potential energy surfaces for butanone isomerization have been investigated by density function theory calculation. Six main reaction pathways are confirmed using the intrinsic reaction coordinate method, and the ...The potential energy surfaces for butanone isomerization have been investigated by density function theory calculation. Six main reaction pathways are confirmed using the intrinsic reaction coordinate method, and the corresponding isomerization products are 1-buten-2-ol, 2-buten-2-ol, butanal or 1-buten-l-ol, methyl 1-propenyl ether, methyl allyl ether, and ethyl vinyl ether, respectively. Among them, there are three pathways through butylene oxide, indicating butylene oxide is an important intermediate product during butanone isomer ization. The calculated vertical ionization energies of the reactant and its products are in a good agreement with the experimental values available. From the consideration for the relative energies Of transition states and the number of high-energy barriers we infer that the reaction pathway butanone-*l-buten-2-ol---2-buten-2-oi is the most competitive. The obtained results are informative for future studies on isomerization of ketone molecules.展开更多
Palladium oxide(PdOx)and cobalt oxide(Co3O4)are efficient catalysts for methane(CH4)combustion,and Pd‐doped Co3O4catalysts have been found to exhibit better catalytic activities,which suggest synergism between the tw...Palladium oxide(PdOx)and cobalt oxide(Co3O4)are efficient catalysts for methane(CH4)combustion,and Pd‐doped Co3O4catalysts have been found to exhibit better catalytic activities,which suggest synergism between the two components.We carried out first‐principles calculations at the PBE+U level to investigate the Pd‐doping effect on CH4reactivity over the Co3O4catalyst.Because of the structural complexity of the Pd‐doped Co3O4catalyst,we built Pd‐doped catalyst models using Co3O4(001)slabs with two different terminations and examined CH4reactivity over the possible Pd?O active sites.A low energy barrier of0.68eV was predicted for CH4dissociation over the more reactive Pd‐doped Co3O4(001)surface,which was much lower than the0.98and0.89eV that was predicted previously over the more reactive pure Co3O4(001)and(011)surfaces,respectively.Using a simple model,we predicted CH4reaction rates over the pure Co3O4(001)and(011)surfaces,and Co3O4(001)surfaces with different amounts of Pd dopant.Our theoretical results agree well with the available experimental data,which suggests a strong synergy between the Pd dopant and the Co3O4catalyst,and leads to a significant increase in CH4reaction rate.展开更多
Fe and Co porphyrins and phthalocyanines are excellent catalysts for the oxygen reduction reaction (ORR) and are promising alternatives to Pt in fuel cells. However, the stability of these molecular catalysts in aci...Fe and Co porphyrins and phthalocyanines are excellent catalysts for the oxygen reduction reaction (ORR) and are promising alternatives to Pt in fuel cells. However, the stability of these molecular catalysts in acidic media is poor. This study explores whether demetalation through proton ex- change causes these metal macrocyclic catalysts to be unstable in acidic media. We first present a theoretical scheme for investigating exchange reactions of metal ions in metal macrocyclic com- pounds with protons in acidic media. The equilibrium concentrations of metal ions in solution when various metalloporphyrins (MPs) and metallophthalocyanines (MPcs) are brought into contact with a strongly acidic solution (pH = 1) were then estimated using density functional theory calculations; these values were used to evaluate the stability of these metal macrocyclic compounds against demetalation in acidic media, The results show that Fe, Co, Ni, and Cu phthalocyanines and porphy- rins have considerable resistance to exchange with protons, whereas Cr, Mn, and Zn phthalocya- nines and porphyrins easily undergo demetalation through ion exchange with protons, This sug- gests that the degradation in the ORR activity of Fe and Co macrocyclic molecular catalysts and of carbon materials doped with Fe(Co) and nitrogen, which are believed to have metal-nitrogen coor- dination structures similar to those of macrocyclic molecules as ORR catalytic centers, is not the result of replacement of metal ions by protons. The calculation results show that electron-donating substituents could enhance the stability of Fe and Co phthalocyanines.展开更多
We found an ultraviolet (UV)-light induced formation of biphenyl and sodium benzoate from benzene and sodium carbonate. The reaction happens in the interface of benzene and aqueous solution at the room temperature. ...We found an ultraviolet (UV)-light induced formation of biphenyl and sodium benzoate from benzene and sodium carbonate. The reaction happens in the interface of benzene and aqueous solution at the room temperature. After 5 h of UV-light exposure, 11.4% of initial amount of 4.4 g (5.0 mL) benzene are converted to biphenyl and sodium benzoate, which are distributed in benzene and aqueous solution, respectively. Using density function theory (DFT) and time dependent DFT, we have investigated the mechanism of this light-induced reaction, and found that the sodium carbonate is not only a reactant for the formation of sodium benzoate, but also a catalyst for the formation of biphenyl.展开更多
The selective hydrogenation of halogenated nitrobenzene over noble metal catalysts(Pd, Pt, and Ir) has attracted much attention owing to its high efficiency and environmental friendliness. However, the effect of size ...The selective hydrogenation of halogenated nitrobenzene over noble metal catalysts(Pd, Pt, and Ir) has attracted much attention owing to its high efficiency and environmental friendliness. However, the effect of size on the catalytic performance varies among different metal catalysts. In this study, sub-nano(<3 nm) Ir and Pd particles were prepared, and their catalytic properties for hydrogenation of halogenated nitrobenzene were evaluated.Results show that high selectivity(N 99%) was achieved over small Ir nanoparticles, in which the selectivity over the Pd with same size was much lower than that on Ir nanoparticles. Meanwhile, Ir and Pd have different hydrogen consumption rates and reaction rates. Density functional theory calculations showed that p-chloronitrobenzene(CNB) has different adsorption properties on Ir and Pd. The distance between oxygen(cholorine) and Ir is much shorter(longer) than that between oxygen and Pd. The reaction barriers of dechlorination of p-CNB and p-chloroaniline over different Ir models are much larger than those on Pd. Especially,lower coordination of Ir leads to larger barriers of dechlorination reaction. These theoretical results explain the difference between Ir and Pd on hydrogenation of halogenated nitrobenzene.展开更多
The effects of surface strain and subsurface promoters, which are both important factors in heterogeneous catalysis, on catalytic selectivity and activity of Pd are examined in this study by considering the selective ...The effects of surface strain and subsurface promoters, which are both important factors in heterogeneous catalysis, on catalytic selectivity and activity of Pd are examined in this study by considering the selective hydrogenation of acetylene as an example. Combined density functional theory calculations and microkinetic modeling reveal that the selectivity and activity of the Pd catalyst for acetylene hydrogenation can both be substantially influenced by the effects of Pd lattice strain variation and subsurface carbon species formation on the adsorption properties of the reactants and products. It is found that the adsorption energies of the reactants and products are, in general, linearly scaled with the lattice strain for both pristine and subsurface carbon atom-modified Pd(111) surfaces, except for the adsorption of C_2H_2 over Pd(111)-C. The activity for ethylene formation typically corresponds to the region of strong reactants adsorption in the volcano curve; such an effect of lattice strain and the presence of subsurface promoters can improve the activity of the catalyst through the weakening of the adsorption of reactants. The activity and selectivity for Pd(111)-C are always higher than those for the pristine Pd(111) surfaces with respect to ethylene formation. Based on the results obtained, Pd-based catalysts with shrinking lattice constants are suggested as good candidates for the selective hydrogenation of acetylene. A similar approach can be used to facilitate the future design of novel heterogeneous catalysts.展开更多
In this study,we investigated the hydrogen evolution reaction(HER)on the(101)facet of pristine and W-doped CoP using the density functional theory.Two types of Co atoms are identified on the catalyst surface:the Co at...In this study,we investigated the hydrogen evolution reaction(HER)on the(101)facet of pristine and W-doped CoP using the density functional theory.Two types of Co atoms are identified on the catalyst surface:the Co atoms that present the higher d band center are marked as valid sites,whereas the others are marked as invalid sites owing to their weaker H adsorption ability.It is further revealed that W-doping can decrease the d band center of the surface Co atoms,which is beneficial for the HER;however the exposure to W weakens the desorption of H.To address the strong adsorption effect of W,the doping sites and dopant content are analyzed,and the results indicate that 8.4 wt%W doping at the invalid surface Co sites is preferred;moreover,the optimal W content increases to 16.8 wt%when W is inserted into the subsurface.The effect of W doping is weakened when the doping site is far away from the surface.展开更多
Dissociation of methyl nitrite is the first step during CO catalytic coupling to dimethyl oxalate followed by hydrogenation to ethyl glycol in a typical coal to liquid process. In this work, the first-principle calcul...Dissociation of methyl nitrite is the first step during CO catalytic coupling to dimethyl oxalate followed by hydrogenation to ethyl glycol in a typical coal to liquid process. In this work, the first-principle calculations based on density functional theory were performed to explore the reaction mechanism for the non-catalytic dissociation of methyl nitrite in the gas phase and the catalytic dissociation of methyl nitrite on Pd(111) surface since palladium supported on alpha-alumina is the most effective catalyst for the coupling. For the non-catalytic case, the calculated results show that the CH_3O–NO bond will break with a bond energy of 1.91 eV, and the produced CH_3O radicals easily decompose to formaldehyde, while the further dissociation of formaldehyde in the gas phase is difficult due to the strong C–H bond. On the other hand, the catalytic dissociation of methyl nitrite on Pd(111) to the adsorbed CH_3O and NO takes place with a small energy barrier of 0.03 eV. The calculated activation energies along the proposed reaction pathways indicate that(i) at low coverage, a successive dehydrogenation of the adsorbed CH_3O to CO and H is favored while(ii) at high coverage, hydrogenation of CH_3O to methanol and carbonylation of CH_3O to methyl formate are more preferred. On the basis of the proposed reaction mechanism,two meaningful ways are proposed to suppress the dissociation of methyl nitrate during the CO catalytic coupling to dimethyl oxalate.展开更多
The C--C bond dissociation energy (BDE) is a very important data in research of hydrocarbon cracking reactions, because it reflects the difficulty level of chemical reactions. But it is very difficult to obtain the ...The C--C bond dissociation energy (BDE) is a very important data in research of hydrocarbon cracking reactions, because it reflects the difficulty level of chemical reactions. But it is very difficult to obtain the C--C bond dissociation energy (BDE) by experiments, so using quantum chemistry calculation such as density functional theory (DFT) to study the C--C bond dissociation energy is a very useful means. The impact of acceptor substituents and donor substituents on the C--C bond length distribution was studied.展开更多
MXenes have attracted considerable attention owing to their versatile and excellent physicochemi‐cal properties.Especially,they have potential applications as robust support for single atom cata‐lysts.Here,quantum c...MXenes have attracted considerable attention owing to their versatile and excellent physicochemi‐cal properties.Especially,they have potential applications as robust support for single atom cata‐lysts.Here,quantum chemical studies with density functional theory are carried out to systemati‐cally investigate the geometries,stability,electronic properties of oxygen functionalized Ti_(2)C(Ti_(2)CO_(2))supported single‐atom catalysts M_(1)/Ti_(2)CO_(2)(M=Fe,Co,Ni,Cu Ru,Rh,Pd,Ag Os,Ir,Pt,Au).A new non‐noble metal SAC Fe_(1)/Ti_(2)CO_(2) has been found to show excellent catalytic performance for low‐temperature CO oxidation after screening the group 8‐11 transition metals.We find that O_(2) and CO adsorption on Fe_(1) atom of Fe_(1)/Ti_(2)CO_(2) is favorable.Accordingly,five possible mechanisms for CO oxidation on this catalyst are evaluated,including Eley‐Rideal,Langmuir‐Hinshelwood,Mars-van Krevelen,Termolecular Eley‐Rideal,and Termolecular Langmuir‐Hinshelwood(TLH)mechanisms.Based on the calculated reaction energies for different pathways,Fe_(1)/Ti_(2)CO_(2) shows excellent kinet‐ics for CO oxidation via TLH mechanism,with distinct low‐energy barrier(0.20 eV)for the rate‐determining step.These results demonstrate that Fe_(1)/Ti_(2)CO_(2) MXene is highly promising 2D materials for building robust non‐noble metal catalysts.展开更多
基金This work is supported by the National Key Research and Development Program(No.2018YFA0208600)the National Natural Science Foundation of Chi-na(No.U19A2015,No.22102167)+2 种基金CAS Project for Young Scientists in Basic Research(YSBR-051)Wenhua Zhang is supported by USTC Tang Scholarship and State Scholarship Fund(202206345005)The calculations were performed at the Super-computing Center of University of Science and Technology of China(USTCSCC).
文摘The dynamic adsorption of possible intermediates on single-atom catalysts(SACs)under working condition plays a key role in the electrocatalytic performance by the oxygen evolution reaction(OER),and therefore the performance of the dynamic adsorption should be fully considered in the theoretical screening of potential SACs.Based on density functional theory calculations,the OER performance of 27 types of C_(2)N-supported single transition metal atoms(TM@C_(2)N)is systematically investigated without and with considering the dynamic adsorption of possible intermediates.Without considering dynamic adsorption,only Rh@C_(2)N and Ni@C_(2)N are screened out as good catalysts.However,by further considering the dynamic adsorption configurations of possible intermediates,more promising TM@C_(2)N SACs including Fe(Co,Ni,Ru,Rh,Ir)@C_(2)N toward the OER are screened out.The presence of the intermediates(*HO,*O)on SACs could shift their d band center toward lower energy level,which makes the interaction between the adsorbate and SACs moderate and thus enhances their OER performance.The present work is instructive for further screening and designing of efficient single-atom catalysts for the oxygen evolution reaction.
文摘Developing highly active alloy catalysts that surpass the performance of platinum group metals in the oxygen reduction reaction(ORR)is critical in electrocatalysis.Gold-based single-atom alloy(AuSAA)clusters are gaining recognition as promising alternatives due to their potential for high activity.However,enhancing its activity of AuSAA clusters remains challenging due to limited insights into its actual active site in alkaline environments.Herein,we studied a variety of Au_(54)M_(1) SAA cluster catalysts and revealed the operando formed MO_(x)(OH)_(y) complex acts as the crucial active site for catalyzing the ORR under the basic solution condition.The observed volcano plot indicates that Au_(54)Co_(1),Au_(54)M_(1),and Au_(54)Ru_(1) clusters can be the optimal Au_(54)M_(1) SAA cluster catalysts for the ORR.Our findings offer new insights into the actual active sites of AuSAA cluster catalysts,which will inform rational catalyst design in experimental settings.
基金Project (50864001) supported by the National Natural Science Foundation of China
文摘The electronic property of pyrite supercell containing As,Se,Te,Co or Ni hetero atoms were calculated using density functional theory(DFT),and the reactivities of pyrite with oxygen and xanthate were discussed by frontier orbital methods.The cell volume expands due to the presence of impurity.Co and Ni mainly affect the bands near Fermi levels,while As mainly affects the shallow and deep valence bands,and Se and Te mainly affect the deep valence bands.Electronic density analysis suggests that there exists a strong covalent interaction between hetero atom and its surrounding atoms.By frontier orbital calculation,it is suggested that As,Co and Ni have greater influence on the HOMO and LUMO of pyrite than Se and Te.In addition,pyrite containing As,Co or Ni is easier to oxidize by oxygen than pyrite containing Se or Te,and pyrite containing Co or Ni has greater interaction with collector.These are in agreement with the observed pyrite practice.
基金This work was supported by the Chinese Academy of Sciences (Hundred Talents Fund), the National Natural Science Foundation of China (No.20703048 and No.20803083), and the Center of Molecular Science Foundation of Institute of Chemistry, Chinese Academy of Sciences (No.CMS-LX200902).
文摘The reactions of anionic zirconium oxide clusters ZrxOy- with C2H6 and C4H10 are investi-gated by a time of flight mass spectrometer coupled with a laser vaporization cluster source.Hydrogen containing products Zr2O5H- and Zr3O7H- are observed after the reaction. Den-sity functional theory calculations indicate that the hydrogen abstraction is favorable in the reaction of Zr2O5- with C2H6, which supports that the observed Zr2O5H- and Zr3O7H- are due to hydrogen atom abstraction from the alkane molecules. This work shows a newpossible pathway in the reaction of zirconium oxide cluster anions with alkane molecules.
基金This work was supported by the National Natural Science Foundation of China (No.20776089) and the New Century Excellent Talents Program of Ministry of Education (No.NCET-05-0783). The State Key Laboratory of Polymer Materials Engineering in Sichuan University was acknowledged for providing dmol3 modules and Prof. Ying Xue, Xiang-yuan Li, and Quan Zhu were grateful for the useful discussions.
文摘The process and mechanism of the ligand volume controlled Pd(PR3)2 (PR3=PH3, PMe3, and PtBu3) oxidative addition with aryl bromide were investigated, using density functional theory method with the conductor-like screening model. Association pathway and dissocia-tion pathway were investigated by the comparison of several energies. The cleavage energy of Pd(PR3)2 complex was calculated, as well as the oxidative addition reaction barrier energy of Pd(PR3)n (n=1,2) with aryl bromide in N,N-dimethylformamide solvent. This study proved that the ligands volume possessed a great impact on the mechanism of oxidative addition: less bulky ligand palladium associated with aryl bromide via two donor ligands,but larger bulky ligand palladium coordinated via monoligand.
基金This work was supported by the National Key Basic Research Special Foundation (No.2007CB815202 and No.2009CB220010) and the National Natural Science Foundation of China (No.20833008).
文摘The solvents and substituents of two similar fluorescent sensors for cyanide, 7-diethylamino- 3-formylcoumarin (sensor a) and 7-diethylamino-3-(2-nitrovinyl)coumarin (sensor b), are proposed to account for their distinct sensing mechanisms and experimental phenomena. The time-dependent density functional theory has been applied to investigate the ground states and the first singlet excited electronic states of the sensor as well as their possible Michael reaction products with cyanide, with a view to monitoring their geometries and photophysieal properties. The theoretical study indicates that the protic water solvent could lead to final Michael addition product of sensor a in the ground state, while the aprotic acetonitrile solvent could lead to carbanion as the final product of sensor b. Furthermore, the Michael reaction product of sensor a has been proved to have a torsion structure in its first singlet excited state. Correspondingly, sensor b also has a torsion structure around the nitrovinyl moiety in its first singlet excited state, while not in its carbanion structure. This could explain the observed strong fluorescence for sensor a and the quenching fluorescence for the sensor b upon the addition of the cyanide anions in the relevant sensing mechanisms.
文摘The potential energy surfaces for butanone isomerization have been investigated by density function theory calculation. Six main reaction pathways are confirmed using the intrinsic reaction coordinate method, and the corresponding isomerization products are 1-buten-2-ol, 2-buten-2-ol, butanal or 1-buten-l-ol, methyl 1-propenyl ether, methyl allyl ether, and ethyl vinyl ether, respectively. Among them, there are three pathways through butylene oxide, indicating butylene oxide is an important intermediate product during butanone isomer ization. The calculated vertical ionization energies of the reactant and its products are in a good agreement with the experimental values available. From the consideration for the relative energies Of transition states and the number of high-energy barriers we infer that the reaction pathway butanone-*l-buten-2-ol---2-buten-2-oi is the most competitive. The obtained results are informative for future studies on isomerization of ketone molecules.
基金supported by the National Natural Science Foundation of China(21473233,21403277)the Energy Technologies Institute LLP,UK~~
文摘Palladium oxide(PdOx)and cobalt oxide(Co3O4)are efficient catalysts for methane(CH4)combustion,and Pd‐doped Co3O4catalysts have been found to exhibit better catalytic activities,which suggest synergism between the two components.We carried out first‐principles calculations at the PBE+U level to investigate the Pd‐doping effect on CH4reactivity over the Co3O4catalyst.Because of the structural complexity of the Pd‐doped Co3O4catalyst,we built Pd‐doped catalyst models using Co3O4(001)slabs with two different terminations and examined CH4reactivity over the possible Pd?O active sites.A low energy barrier of0.68eV was predicted for CH4dissociation over the more reactive Pd‐doped Co3O4(001)surface,which was much lower than the0.98and0.89eV that was predicted previously over the more reactive pure Co3O4(001)and(011)surfaces,respectively.Using a simple model,we predicted CH4reaction rates over the pure Co3O4(001)and(011)surfaces,and Co3O4(001)surfaces with different amounts of Pd dopant.Our theoretical results agree well with the available experimental data,which suggests a strong synergy between the Pd dopant and the Co3O4catalyst,and leads to a significant increase in CH4reaction rate.
基金supported by the National Basic Research Program of China(973 program,2012CB215500 and 2012CB932800)~~
文摘Fe and Co porphyrins and phthalocyanines are excellent catalysts for the oxygen reduction reaction (ORR) and are promising alternatives to Pt in fuel cells. However, the stability of these molecular catalysts in acidic media is poor. This study explores whether demetalation through proton ex- change causes these metal macrocyclic catalysts to be unstable in acidic media. We first present a theoretical scheme for investigating exchange reactions of metal ions in metal macrocyclic com- pounds with protons in acidic media. The equilibrium concentrations of metal ions in solution when various metalloporphyrins (MPs) and metallophthalocyanines (MPcs) are brought into contact with a strongly acidic solution (pH = 1) were then estimated using density functional theory calculations; these values were used to evaluate the stability of these metal macrocyclic compounds against demetalation in acidic media, The results show that Fe, Co, Ni, and Cu phthalocyanines and porphy- rins have considerable resistance to exchange with protons, whereas Cr, Mn, and Zn phthalocya- nines and porphyrins easily undergo demetalation through ion exchange with protons, This sug- gests that the degradation in the ORR activity of Fe and Co macrocyclic molecular catalysts and of carbon materials doped with Fe(Co) and nitrogen, which are believed to have metal-nitrogen coor- dination structures similar to those of macrocyclic molecules as ORR catalytic centers, is not the result of replacement of metal ions by protons. The calculation results show that electron-donating substituents could enhance the stability of Fe and Co phthalocyanines.
文摘We found an ultraviolet (UV)-light induced formation of biphenyl and sodium benzoate from benzene and sodium carbonate. The reaction happens in the interface of benzene and aqueous solution at the room temperature. After 5 h of UV-light exposure, 11.4% of initial amount of 4.4 g (5.0 mL) benzene are converted to biphenyl and sodium benzoate, which are distributed in benzene and aqueous solution, respectively. Using density function theory (DFT) and time dependent DFT, we have investigated the mechanism of this light-induced reaction, and found that the sodium carbonate is not only a reactant for the formation of sodium benzoate, but also a catalyst for the formation of biphenyl.
基金Supported by the National Natural Science Foundation of China(Nos.21473159 and91334013)
文摘The selective hydrogenation of halogenated nitrobenzene over noble metal catalysts(Pd, Pt, and Ir) has attracted much attention owing to its high efficiency and environmental friendliness. However, the effect of size on the catalytic performance varies among different metal catalysts. In this study, sub-nano(<3 nm) Ir and Pd particles were prepared, and their catalytic properties for hydrogenation of halogenated nitrobenzene were evaluated.Results show that high selectivity(N 99%) was achieved over small Ir nanoparticles, in which the selectivity over the Pd with same size was much lower than that on Ir nanoparticles. Meanwhile, Ir and Pd have different hydrogen consumption rates and reaction rates. Density functional theory calculations showed that p-chloronitrobenzene(CNB) has different adsorption properties on Ir and Pd. The distance between oxygen(cholorine) and Ir is much shorter(longer) than that between oxygen and Pd. The reaction barriers of dechlorination of p-CNB and p-chloroaniline over different Ir models are much larger than those on Pd. Especially,lower coordination of Ir leads to larger barriers of dechlorination reaction. These theoretical results explain the difference between Ir and Pd on hydrogenation of halogenated nitrobenzene.
基金supported by the National Natural Science Foundation of China(21603142)the Shanghai Pujiang Program(16PJ1406800)the Shanghai Young Eastern Scholar Program(QD2016049)~~
文摘The effects of surface strain and subsurface promoters, which are both important factors in heterogeneous catalysis, on catalytic selectivity and activity of Pd are examined in this study by considering the selective hydrogenation of acetylene as an example. Combined density functional theory calculations and microkinetic modeling reveal that the selectivity and activity of the Pd catalyst for acetylene hydrogenation can both be substantially influenced by the effects of Pd lattice strain variation and subsurface carbon species formation on the adsorption properties of the reactants and products. It is found that the adsorption energies of the reactants and products are, in general, linearly scaled with the lattice strain for both pristine and subsurface carbon atom-modified Pd(111) surfaces, except for the adsorption of C_2H_2 over Pd(111)-C. The activity for ethylene formation typically corresponds to the region of strong reactants adsorption in the volcano curve; such an effect of lattice strain and the presence of subsurface promoters can improve the activity of the catalyst through the weakening of the adsorption of reactants. The activity and selectivity for Pd(111)-C are always higher than those for the pristine Pd(111) surfaces with respect to ethylene formation. Based on the results obtained, Pd-based catalysts with shrinking lattice constants are suggested as good candidates for the selective hydrogenation of acetylene. A similar approach can be used to facilitate the future design of novel heterogeneous catalysts.
文摘In this study,we investigated the hydrogen evolution reaction(HER)on the(101)facet of pristine and W-doped CoP using the density functional theory.Two types of Co atoms are identified on the catalyst surface:the Co atoms that present the higher d band center are marked as valid sites,whereas the others are marked as invalid sites owing to their weaker H adsorption ability.It is further revealed that W-doping can decrease the d band center of the surface Co atoms,which is beneficial for the HER;however the exposure to W weakens the desorption of H.To address the strong adsorption effect of W,the doping sites and dopant content are analyzed,and the results indicate that 8.4 wt%W doping at the invalid surface Co sites is preferred;moreover,the optimal W content increases to 16.8 wt%when W is inserted into the subsurface.The effect of W doping is weakened when the doping site is far away from the surface.
基金Supported by the National Natural Science Foundation of China(21303102)China Postdoctoral Science Foundation funded project(2012M520900 and 2013T60449)
文摘Dissociation of methyl nitrite is the first step during CO catalytic coupling to dimethyl oxalate followed by hydrogenation to ethyl glycol in a typical coal to liquid process. In this work, the first-principle calculations based on density functional theory were performed to explore the reaction mechanism for the non-catalytic dissociation of methyl nitrite in the gas phase and the catalytic dissociation of methyl nitrite on Pd(111) surface since palladium supported on alpha-alumina is the most effective catalyst for the coupling. For the non-catalytic case, the calculated results show that the CH_3O–NO bond will break with a bond energy of 1.91 eV, and the produced CH_3O radicals easily decompose to formaldehyde, while the further dissociation of formaldehyde in the gas phase is difficult due to the strong C–H bond. On the other hand, the catalytic dissociation of methyl nitrite on Pd(111) to the adsorbed CH_3O and NO takes place with a small energy barrier of 0.03 eV. The calculated activation energies along the proposed reaction pathways indicate that(i) at low coverage, a successive dehydrogenation of the adsorbed CH_3O to CO and H is favored while(ii) at high coverage, hydrogenation of CH_3O to methanol and carbonylation of CH_3O to methyl formate are more preferred. On the basis of the proposed reaction mechanism,two meaningful ways are proposed to suppress the dissociation of methyl nitrate during the CO catalytic coupling to dimethyl oxalate.
文摘The C--C bond dissociation energy (BDE) is a very important data in research of hydrocarbon cracking reactions, because it reflects the difficulty level of chemical reactions. But it is very difficult to obtain the C--C bond dissociation energy (BDE) by experiments, so using quantum chemistry calculation such as density functional theory (DFT) to study the C--C bond dissociation energy is a very useful means. The impact of acceptor substituents and donor substituents on the C--C bond length distribution was studied.
文摘MXenes have attracted considerable attention owing to their versatile and excellent physicochemi‐cal properties.Especially,they have potential applications as robust support for single atom cata‐lysts.Here,quantum chemical studies with density functional theory are carried out to systemati‐cally investigate the geometries,stability,electronic properties of oxygen functionalized Ti_(2)C(Ti_(2)CO_(2))supported single‐atom catalysts M_(1)/Ti_(2)CO_(2)(M=Fe,Co,Ni,Cu Ru,Rh,Pd,Ag Os,Ir,Pt,Au).A new non‐noble metal SAC Fe_(1)/Ti_(2)CO_(2) has been found to show excellent catalytic performance for low‐temperature CO oxidation after screening the group 8‐11 transition metals.We find that O_(2) and CO adsorption on Fe_(1) atom of Fe_(1)/Ti_(2)CO_(2) is favorable.Accordingly,five possible mechanisms for CO oxidation on this catalyst are evaluated,including Eley‐Rideal,Langmuir‐Hinshelwood,Mars-van Krevelen,Termolecular Eley‐Rideal,and Termolecular Langmuir‐Hinshelwood(TLH)mechanisms.Based on the calculated reaction energies for different pathways,Fe_(1)/Ti_(2)CO_(2) shows excellent kinet‐ics for CO oxidation via TLH mechanism,with distinct low‐energy barrier(0.20 eV)for the rate‐determining step.These results demonstrate that Fe_(1)/Ti_(2)CO_(2) MXene is highly promising 2D materials for building robust non‐noble metal catalysts.