期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于密度缩放因子的ISOMAP算法 被引量:3
1
作者 李香元 蔡骋 何进荣 《计算机科学》 CSCD 北大核心 2018年第7期207-213,共7页
等度量映射(ISOMAP)算法是一种被广泛应用的非线性无监督降维算法,通过保持各个观测样本间的测地距离进行等距嵌入,从而实现高维空间向低维空间的坐标转换。但在实际应用中,观测数据无可避免地会存在噪声,由于测地距离的计算对噪声比较... 等度量映射(ISOMAP)算法是一种被广泛应用的非线性无监督降维算法,通过保持各个观测样本间的测地距离进行等距嵌入,从而实现高维空间向低维空间的坐标转换。但在实际应用中,观测数据无可避免地会存在噪声,由于测地距离的计算对噪声比较敏感,并且也没有考虑数据集的密度分布,导致ISOMAP算法降维后低维坐标表示存在几何变形。针对这一缺点,根据局部密度的思想,提出一种基于密度缩放因子的ISOMAP(Density Scaling Factor Based ISOMAP,D-ISOMAP)算法。在传统的ISOMAP算法框架下,首先,针对每个观测样本计算一个局部密度缩放因子;然后,在测地距离的计算过程中,将直接相邻的两个样本之间的测地距离除以这两个样本密度缩放因子的乘积;最后,通过最短路径算法求得改进后的距离矩阵,并对其进行降维处理。改进的测地距离在密度较大的区域被缩小,而在密度较小的区域被放大,这样可以减小噪声对降维效果的影响,提升可视化和聚类效果。人工数据集和UCI数据集上的实验结果表明,在数据集的可视化和聚类效果方面,D-ISOMAP算法较经典的无监督降维算法具有一定的优势。 展开更多
关键词 ISOMAP 流形学习 密度缩放因子 噪声数据 降维
下载PDF
基于密度和相关分量分析的局部线性嵌入算法 被引量:1
2
作者 王楠 贾永利 +3 位作者 韩淑运 杨裔 李廉 李彩虹 《计算机工程与设计》 北大核心 2021年第5期1293-1299,共7页
为解决局部线性嵌入算法(LLE)性能受初始邻域值大小和相似性度量选取的制约,提出一种基于密度和相关分量分析(relevant component analysis,RCA)的局部线性嵌入算法(DRLLE)。对每一个样本点计算一个密度缩放因子,根据密度缩放因子对样... 为解决局部线性嵌入算法(LLE)性能受初始邻域值大小和相似性度量选取的制约,提出一种基于密度和相关分量分析(relevant component analysis,RCA)的局部线性嵌入算法(DRLLE)。对每一个样本点计算一个密度缩放因子,根据密度缩放因子对样本点的初始邻域值进行自适应调整,计算RCA距离作为LLE算法的相似性度量,得到样本点的近邻集,进行降维处理。将DRLLE和其它LLE改进算法在Swiss roll、Swiss roll hole和ORL数据库上进行对比实验,其结果表明,DRLLE算法具有良好的降维效果和识别性能。 展开更多
关键词 降维 流行学习 局部线性嵌入 DRLLE算法 密度缩放因子 相关分量分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部