Au Pd nanoalloys with tunable Pd concentrations have been synthesized and used as model catalysts. They have been directly imaged by high-angle annular dark-field scanning transmission electron microscopy and investig...Au Pd nanoalloys with tunable Pd concentrations have been synthesized and used as model catalysts. They have been directly imaged by high-angle annular dark-field scanning transmission electron microscopy and investigated by thorough analyses of their extended X-ray absorption fine structure, X-ray absorption near-edge structure, X-ray diffraction and X-ray photoelectron spectroscopy measurements. The bimetallic nanoparticles are embedded in a carbonaceous matrix and have almost an identical structure at the atomic level and the same electronic properties as Au Pd bulk alloys with the same compositions. The d-electron increase at surface Pd sites is determined by the Pd concentration of the alloy. Similarly, their activation entropy and catalytic activity for the hydrogenation of quinoline is related to the Pd concentration, with Au50 Pd50 the most active of the alloys investigated. An almost 11 times higher activity was achieved compared to a pure Pd catalyst. The experimentally measurable surface d charge at the Pd sites in the Au Pd was found to linearly correlate with the activation entropy and catalytic activity for the hydrogenation of quinoline. The alloy structure is stable, showing negligible metal segregation, dissolution-redeposition and aggregation during the hydrogenation process which involves strong adsorption.展开更多
This paper presents a method based on a sample-decision(SD) circuit to suppress crosstalk and noise for a high-speed and high-density bus system.A method to count the number of times of SD for different length of tran...This paper presents a method based on a sample-decision(SD) circuit to suppress crosstalk and noise for a high-speed and high-density bus system.A method to count the number of times of SD for different length of transmission lines is presented and a bit error rates(BERs) formula is given by the SD circuit.It is shown that for long transmission line systems,multiple SD circuits can improve the BERs significantly.Circuits simulation for single SD method is also done,it is found that when the amplitude peak values of the superposed crosstalk and noise are less than half of the corresponding signal ones,they will be eliminated completely for the cases investigated.展开更多
Developing highly efficient platinum‐group‐metal‐free electrocatalysts towards hydrogen oxidation reaction(HOR)under alkaline electrolyte is critical for the development of alkaline exchange member fuel cells.Herei...Developing highly efficient platinum‐group‐metal‐free electrocatalysts towards hydrogen oxidation reaction(HOR)under alkaline electrolyte is critical for the development of alkaline exchange member fuel cells.Herein,we reported the synthesis of boron doped Ni electrocatalyst(B‐Ni/C)and its remarkable alkaline HOR performance,with a 10‐fold mass activity enhancement compared with that of undoped Ni catalyst.Experimental results and density functional theory calculations indicate the d‐p hybridization between the p orbital of B and the d orbital of Ni via B‐doping could lead to promoted OH adsorption and optimized hydrogen binding energy on Ni surface,which together with the reduced formation energy of water species,contributes to the enhanced HOR performance under alkaline electrolyte.展开更多
文摘Au Pd nanoalloys with tunable Pd concentrations have been synthesized and used as model catalysts. They have been directly imaged by high-angle annular dark-field scanning transmission electron microscopy and investigated by thorough analyses of their extended X-ray absorption fine structure, X-ray absorption near-edge structure, X-ray diffraction and X-ray photoelectron spectroscopy measurements. The bimetallic nanoparticles are embedded in a carbonaceous matrix and have almost an identical structure at the atomic level and the same electronic properties as Au Pd bulk alloys with the same compositions. The d-electron increase at surface Pd sites is determined by the Pd concentration of the alloy. Similarly, their activation entropy and catalytic activity for the hydrogenation of quinoline is related to the Pd concentration, with Au50 Pd50 the most active of the alloys investigated. An almost 11 times higher activity was achieved compared to a pure Pd catalyst. The experimentally measurable surface d charge at the Pd sites in the Au Pd was found to linearly correlate with the activation entropy and catalytic activity for the hydrogenation of quinoline. The alloy structure is stable, showing negligible metal segregation, dissolution-redeposition and aggregation during the hydrogenation process which involves strong adsorption.
基金Supported by the National Natural Science Foundation of China(No.61171039,61072059)
文摘This paper presents a method based on a sample-decision(SD) circuit to suppress crosstalk and noise for a high-speed and high-density bus system.A method to count the number of times of SD for different length of transmission lines is presented and a bit error rates(BERs) formula is given by the SD circuit.It is shown that for long transmission line systems,multiple SD circuits can improve the BERs significantly.Circuits simulation for single SD method is also done,it is found that when the amplitude peak values of the superposed crosstalk and noise are less than half of the corresponding signal ones,they will be eliminated completely for the cases investigated.
文摘Developing highly efficient platinum‐group‐metal‐free electrocatalysts towards hydrogen oxidation reaction(HOR)under alkaline electrolyte is critical for the development of alkaline exchange member fuel cells.Herein,we reported the synthesis of boron doped Ni electrocatalyst(B‐Ni/C)and its remarkable alkaline HOR performance,with a 10‐fold mass activity enhancement compared with that of undoped Ni catalyst.Experimental results and density functional theory calculations indicate the d‐p hybridization between the p orbital of B and the d orbital of Ni via B‐doping could lead to promoted OH adsorption and optimized hydrogen binding energy on Ni surface,which together with the reduced formation energy of water species,contributes to the enhanced HOR performance under alkaline electrolyte.