Based on the three-order Lagrangian equation, pseudo-Hamilton actoon I^* is defined and the three-order Hamilton's principle and the conditions are obtained in the paper. Then, the Noether symmetry about three-order...Based on the three-order Lagrangian equation, pseudo-Hamilton actoon I^* is defined and the three-order Hamilton's principle and the conditions are obtained in the paper. Then, the Noether symmetry about three-order Lagrangian equations is deduced. Finally, an example is given to illustrate the application of the result.展开更多
A first-principles study has been performed to calculate the electronic and optical properties of the SbxSn1xO system.The simulations are based upon the method of generalized gradient approximations with the Perdew-Bu...A first-principles study has been performed to calculate the electronic and optical properties of the SbxSn1xO system.The simulations are based upon the method of generalized gradient approximations with the Perdew-Burke-Ernzerhof form in the framework of density functional theory.The supercell structure shows a trend from expanding to shrinking with the increasing Sb concentration.The increasing Sb concentration induces the band gap narrowing.Optical transition has shifted to the low energy range with increasing Sb concentration.Other important optical constants such as the dielectric function,reflectivity,refractive index,and electron energy loss function for Sb-doped SnO2 are discussed.The optical absorption edge of SnO2 doped with Sb also shows a redshift.展开更多
The paper presents the theory of Hamilton variation principle which is the current method for impact problem, central difference method which is efficient solution of finite element (FE) method for impact problem and ...The paper presents the theory of Hamilton variation principle which is the current method for impact problem, central difference method which is efficient solution of finite element (FE) method for impact problem and adapts to solve non-linear dynamic problem. And it introduces the ANSYS/LS-DYNA which is the popular FE software for impact problem both at home and abroad. Then it gives solutions for one simple model by analytical method and ANSYS/LS-DYNA respec-tively to validate function of software, and they are consistent. Afterward, it gives model of single-layer Kiewitt reticulated dome with a span of 60 m, and the cylinder impactor, and introduces the contact interface arithmetic, especially the material model of steel (piecewise linear plasticity model) which takes stain rate into account and makes steel failure stress higher under impact loads. The vertical displacement, stress in main members, and the plastic deformation for dome under impact loads were obtained. Then four failure modes (no failure, moderate failure, global failure and slight failure) were summarized according to the rules of dynamic response. And the characteristics of dynamic response for each failure mode were shown.展开更多
First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadi...First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadium phosphide compounds was calculated to assess their structural stability. The charge density distribution and densities of states of vanadium phosphides were discussed to study further their electronic structures. The results show that the structure of metal-rich compounds is considerably more stable than the phosphorus-rich compositions,and covalent bond exists between the V and P atoms of V3P,V2P,VP,VP2 and VP4.展开更多
The electronic properties of sphalerite(110) surface with Zn-vacancy and S-vacancy were calculated by using density-functional theory,and the effects of vacancy defect on the copper activation of sphalerite were inves...The electronic properties of sphalerite(110) surface with Zn-vacancy and S-vacancy were calculated by using density-functional theory,and the effects of vacancy defect on the copper activation of sphalerite were investigated.The calculated results indicate that surface state occurs in the band gap of Zn-vacancy sphalerite,which is from the contribution of S 3p orbital at the first layer of the surface.The presence of S-vacancy results in surface state appearing near the Fermi level and the bottom of conductor band,which are composed of S 3p and Zn 4s orbital,respectively.The surface structure of Zn-vacancy sphalerite is more stable than S-vacancy surface due to the occupation of Zn-vacancy by Cu atoms;hence,the substitution reaction of Cu for Zn vacancy is easier than the substitution of Cu for Zn atoms with S-vacancy surface.展开更多
The selective catalytic reduction reaction belongs to the gas-solid multiphase reaction, and the adsorption of NH3 and NO on CuO/γ-Al2O3 catalysts plays an important role in the reaction. Performance of the CuO/γ-Al...The selective catalytic reduction reaction belongs to the gas-solid multiphase reaction, and the adsorption of NH3 and NO on CuO/γ-Al2O3 catalysts plays an important role in the reaction. Performance of the CuO/γ-Al2O3 catalysts was explored in a fixed bed adsorption system. The catalysts maintain nearly 100% NO conversion efficiency at 350℃. Comprehensive tests were carried out to study the adsorption behavior of NH3 and NO over the catalysts. The desorption experiments prove that NH3 and NO are adsorbed on CuO/γ-Al2O3 catalysts. The adsorption behaviors of NH3 and NO were also studied with the in-situ diffusion reflectance infrared Fourier transform spectroscopy methods. The results show that NH3 could be strongly adsorbed on the catalysts, resulting in coordinated NH3 and NH4+. NO adsorption leads to the formation of bridging bidentate nitrate, chelating bidentate nitrate, and chelating nitro. The interaction of NH3 and NO molecules with the Cu2+ present on the CAl2O3 (100) surface was investigated by using a periodic density functional theory. The results show that the adsorption of all the molecules on the Cu2+ site is energetically favorable, whereas NO bound is stronger than that of NH3 with the adsorption site, and key information about the structural and energetic properties was also addressed.展开更多
Encapsulation of alkali metals (Li, Na, K, and Rb) into Zn12O12 nanocage has been inves- tigated using density functional theory. Encapsulation of Li and Na atoms is found to be thermodynamically favorable at 298 K ...Encapsulation of alkali metals (Li, Na, K, and Rb) into Zn12O12 nanocage has been inves- tigated using density functional theory. Encapsulation of Li and Na atoms is found to be thermodynamically favorable at 298 K and 100 kPa, with negative Gibbs free energy change AG of about -130.12 and -68.43 kJ/mol, respectively. By increasing the size of encapsu- lated atom the process become less favorable so that in the cases of K and Rb encapsulations the AG values are positive. The results indicate that the LUMO, Fermi level, and specially HOMO of the cluster are shifted to higher energies so that the HOMO-LUMO gap of the cluster is significantly narrowed in all the cases. After encapsulation of the alkali metals the work function of cluster is decreased due to the shift of the Fermi level to higher energies. Therefore, the emitted electron current density from the Zn12O12 cluster will be increased.展开更多
The elastic properties of the wurtzite-type aluminum nitride (w-AlN) are investigated by ab initio plane-wave pseudopotential density functional theory method. The pressure dependences of the normalized primitive ce...The elastic properties of the wurtzite-type aluminum nitride (w-AlN) are investigated by ab initio plane-wave pseudopotential density functional theory method. The pressure dependences of the normalized primitive cell volume V/Vo, the elastic constants cij, the aggregate elastic modulus (B, G, E), the Poisson's ratio (v), and the Debye temperature θD are successfully obtained. From the elastic constants of the w-AlN under pressure, we find that the w-AlN should be unstable at higher pressure than 61.33 GPa.展开更多
Abstract: With the substitution of part Mg in LaMg3 by Cu, the elastic constants CH and C12 increase while C44 decreases, implying an enhanced Poisson effect and smaller resistance to 〈001〉(100) shear. Furthermor...Abstract: With the substitution of part Mg in LaMg3 by Cu, the elastic constants CH and C12 increase while C44 decreases, implying an enhanced Poisson effect and smaller resistance to 〈001〉(100) shear. Furthermore, the bulk modulus B increases, while the shear modulus G, elastic modulus E and anisotropie ratio A are reduced. The calculated Debye temperature of LaCuMg2 is lower, implying the weaker interaction between atoms in LaCuMg2. Then, the stress-strain curves in entire range and the ideal strength at critical strain are studied. The present results show that the lowest ideal tensile strength for LaMg3 and LaCuMg2 is in the 〈100〉 direction. The ideal shear strength on the 〈 1 ^-1 0〉(110) slip system of LaMg3 is greater than LaCuMg2. The density of states and charge density distribution are further studied to understand the inherent mechanism of the mechanical properties.展开更多
Electronic structure and optical properties of the zinc-blende InxGa1-xNyAs1-y system are calculated from the first-principles. Some relative simulations are performed using CA-PZ form of local density approximation i...Electronic structure and optical properties of the zinc-blende InxGa1-xNyAs1-y system are calculated from the first-principles. Some relative simulations are performed using CA-PZ form of local density approximation in the framework of density functional theory. The supercell of intrinsic GaAs is calculated and optimized by using different methods, and the LDA-CA-PZ gives the most stable structure. The band gap of InzGa1-x As tends to decrease with the increasing In concentration. For the case of In0.0625Ga0.9375NyAs1-y, the band gap will show slight difference when N concentration is larger than 18. 75~. The optical transition of In dopant in GaAs exhibits a red shift, while it is a blue shift for the N dopant in InGaAs. Besides, dielectric function, reflectivity, refractive index and loss function in different doping model of InxGa1-xNyAs1-y are also discussed.展开更多
The electronic structure and optical properties of VO2 and Au-VO2 were studied using density functional theory. The calculation results show that the interaction between Au and O is stronger than that between V and O....The electronic structure and optical properties of VO2 and Au-VO2 were studied using density functional theory. The calculation results show that the interaction between Au and O is stronger than that between V and O. There exists not only the covalent bonding but also ionic bonding in Au--O bond. The band gap of Au-VO2 is smaller than that of VO〉 while the dielectric constant, conductivity, and intensity of optical absorption of Au-VO2 are larger than those of VO2.展开更多
With the help of supercell method, the first-principle calculations were performed for the study of doping crystal Mg1-xAlxB2 and Mg(B1-yCy)2. Analyzing the variations of the charge distribution and the partial dens...With the help of supercell method, the first-principle calculations were performed for the study of doping crystal Mg1-xAlxB2 and Mg(B1-yCy)2. Analyzing the variations of the charge distribution and the partial densities of states, we found that the compounds with doping Al to MgB2 compound and/or replacing boron by carbon exhibit new covalent bond effects and unexpected electronic properties, related to superconductivity. The study of the density of states indicates that superconductivity decreases with the increase of Al fraction and carbon concentration. There exists a transition of superconductor to non-superconductor with the change of Al doping fraction. The substitution of boron by carbon results in the decrease of the transition temperature since the decrease of the electron concentration and the lattice constant. The theoretical predictions agree with experimental observations.展开更多
Dependence of conductance of corrugated graphene quantum dot(CGQD)on geometrical features includinglength,width,connection and edge is investigated by the first principles calculations.The results demonstrate that the...Dependence of conductance of corrugated graphene quantum dot(CGQD)on geometrical features includinglength,width,connection and edge is investigated by the first principles calculations.The results demonstrate that theconductance of CGQD with different geometrical features is different from each other.The positions and amplitudesof discrete levels in densities of states and transmission coefficients are sensitive to geometrical features.The I-Vcharacteristics of graphene are modified by size and edge,it is surprise the current does not change monotonously butoscillatory with length.And they are slight change for different connections.展开更多
The SCR reaction mechanism of NO with C3H6catalyzed by CuO was studied by the method of Density Functional Theory(DFT)at the B3LYP/LanL2DZ levels.The optimized geometries of the stationary points on the potential surf...The SCR reaction mechanism of NO with C3H6catalyzed by CuO was studied by the method of Density Functional Theory(DFT)at the B3LYP/LanL2DZ levels.The optimized geometries of the stationary points on the potential surface were obtained and the transition state was confirmed by IRC and vibration analysis.The activation energy was calculated being 34.26 kJ/mol.It was shown that propylene reacted firstly with Cu forming intermediate,and then nitrogen monoxide immediately reacted with the intermediate to be reduced.It was proved to be a direct interaction mechanism.展开更多
First-principles calculations have been performed for the study of the electronic band structure and ferromagnetic properties of double perovskite Ca2CrSbO6. The density of states, total energy, spin magnetic moment, ...First-principles calculations have been performed for the study of the electronic band structure and ferromagnetic properties of double perovskite Ca2CrSbO6. The density of states, total energy, spin magnetic moment, and charge density were calculated and analyzed in details. It is found that Ca2CrSbO6 has a stable ferromagnetic ground state and the spin magnetic moment per molecule is about 2.99#B. The chromium contributes the most in the total magnetic moments. The results indicate that Ca2CrSbO6 is half-metallic.展开更多
In this work, a density functional theory (DFT) based first-principles study is carried out to investigate tile potential of phosphorene-like SiS and SiSe monolayers as anode materials for sodium-ion (Na-ion) bat-...In this work, a density functional theory (DFT) based first-principles study is carried out to investigate tile potential of phosphorene-like SiS and SiSe monolayers as anode materials for sodium-ion (Na-ion) bat- teries. Results show that both SiS and SiSe have large adsorption energies towards single Na atom of 0.94 and -0.43 eV, owing to the charge transfers from Na to SiS or SiSe. In addition, it is found that the highest Na concentration for both SiS and SiSe is x = 1 with the chemical formulas of NaSiS and NaSiSe, corresponding to the high theoretical specific capacities for Na storages of 445.6 and 250.4 mAh g 1, respectively. Moreover, Na diffusions are very fast and show strong directional behaviors on SiS and SiSe monolayers, with the energy barriers of only 0.135 and 0.158 eV, lower than those of con- ventional anode materials for Na-ion batteries such as Na2Ti3O7 (0.19 eV) and Na3Sb (0.21 eV). Finally, although SiS and SiSe show semiconducting behaviors, they transform to metallic states after adsorbing Na atoms, indicating enhanced electrical conductivity during battery cycling. Given these advantages, it is expected that both SiS and SiSe monolayers are promising anode materials for Na-ion batteries, and in principle, other Na-based batteries as well.展开更多
Based on the density functional theory (DFT), the electronic structures and optical properties of Mg2Pb are calculated by using the local density approximation (LDA) and plane wave pseudo-potential method. The cal...Based on the density functional theory (DFT), the electronic structures and optical properties of Mg2Pb are calculated by using the local density approximation (LDA) and plane wave pseudo-potential method. The calculation results show that the indirect band gap width of Mg2Pb is 0.02796 eV. The optical properties of MgzPb have isotropic characteristics, the static dielectric function of Mg2Pb is ε1(0) = 10.33 and the refractive index is n0 = 3.5075. The maximum absorption coefficient is 4.8060×10^5 cm-1. The absorption in the photon energy range of 25-40 eV approaches to zero, shows the optical colorless and transparent behaviors.展开更多
Band structure, density of states, electron density difference, and optical properties of intrinsic β-Ga2O3 and Sn2xGa2(1-x)O3 (x= 3.125%-6.25%) compounds are studied using first-principle calculations based on the d...Band structure, density of states, electron density difference, and optical properties of intrinsic β-Ga2O3 and Sn2xGa2(1-x)O3 (x= 3.125%-6.25%) compounds are studied using first-principle calculations based on the density functional theory. The anisotropic optical properties are investigated by means of the complex dielectric function, which are explained by the selection rule of band-to-band transitions. All the calculation results indicate that the conductivity of Sn2xGa2(1-x)O3 is super to β-Ga2O3, and the calculated results consist with experiments that have been reported.展开更多
We have investigated the effects of B impurities on the structure and mechanical properties of NiA1 intermetallics by using a first-principles pseudopotential total-energy method, based on the density functional theor...We have investigated the effects of B impurities on the structure and mechanical properties of NiA1 intermetallics by using a first-principles pseudopotential total-energy method, based on the density functional theory with a generalized gradient approximation. We found that the impurity B atoms can either replace Ni atoms or Al atoms or both, depending on the surround- ing environment. We demonstrated that the presence of B will cause an increase in brittleness and a decrease in the ductility of NiAI for the Al-substitutional case, while causing an increase in the ductility of NiAl for the Ni-subtitutional case, based on the calculated elastic constants and the empirical criterions. This indicates that the effects of B impurities on the mechanical prop- erties of NiAl intermetallics are quite composition-dependent.展开更多
文摘Based on the three-order Lagrangian equation, pseudo-Hamilton actoon I^* is defined and the three-order Hamilton's principle and the conditions are obtained in the paper. Then, the Noether symmetry about three-order Lagrangian equations is deduced. Finally, an example is given to illustrate the application of the result.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No. BUPT2009RC0412the National Natural Science Foundation of China under Grant Nos. 60908028 and 60971068
文摘A first-principles study has been performed to calculate the electronic and optical properties of the SbxSn1xO system.The simulations are based upon the method of generalized gradient approximations with the Perdew-Burke-Ernzerhof form in the framework of density functional theory.The supercell structure shows a trend from expanding to shrinking with the increasing Sb concentration.The increasing Sb concentration induces the band gap narrowing.Optical transition has shifted to the low energy range with increasing Sb concentration.Other important optical constants such as the dielectric function,reflectivity,refractive index,and electron energy loss function for Sb-doped SnO2 are discussed.The optical absorption edge of SnO2 doped with Sb also shows a redshift.
基金Supported by National Natural Science Foundation of China(No.90715034)
文摘The paper presents the theory of Hamilton variation principle which is the current method for impact problem, central difference method which is efficient solution of finite element (FE) method for impact problem and adapts to solve non-linear dynamic problem. And it introduces the ANSYS/LS-DYNA which is the popular FE software for impact problem both at home and abroad. Then it gives solutions for one simple model by analytical method and ANSYS/LS-DYNA respec-tively to validate function of software, and they are consistent. Afterward, it gives model of single-layer Kiewitt reticulated dome with a span of 60 m, and the cylinder impactor, and introduces the contact interface arithmetic, especially the material model of steel (piecewise linear plasticity model) which takes stain rate into account and makes steel failure stress higher under impact loads. The vertical displacement, stress in main members, and the plastic deformation for dome under impact loads were obtained. Then four failure modes (no failure, moderate failure, global failure and slight failure) were summarized according to the rules of dynamic response. And the characteristics of dynamic response for each failure mode were shown.
基金Project(20871101)supported by the National Natural Science Foundation of ChinaProject(09C945)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadium phosphide compounds was calculated to assess their structural stability. The charge density distribution and densities of states of vanadium phosphides were discussed to study further their electronic structures. The results show that the structure of metal-rich compounds is considerably more stable than the phosphorus-rich compositions,and covalent bond exists between the V and P atoms of V3P,V2P,VP,VP2 and VP4.
基金Project(50864001) supported by the National Natural Science Foundation of China
文摘The electronic properties of sphalerite(110) surface with Zn-vacancy and S-vacancy were calculated by using density-functional theory,and the effects of vacancy defect on the copper activation of sphalerite were investigated.The calculated results indicate that surface state occurs in the band gap of Zn-vacancy sphalerite,which is from the contribution of S 3p orbital at the first layer of the surface.The presence of S-vacancy results in surface state appearing near the Fermi level and the bottom of conductor band,which are composed of S 3p and Zn 4s orbital,respectively.The surface structure of Zn-vacancy sphalerite is more stable than S-vacancy surface due to the occupation of Zn-vacancy by Cu atoms;hence,the substitution reaction of Cu for Zn vacancy is easier than the substitution of Cu for Zn atoms with S-vacancy surface.
基金Projects(50806025, 51021065, 50976038) supported by the National Natural Science Foundation of ChinaProject(20100480893) supported by the China Postdoctoral Science FoundationProject(1001022B) supported by the Postdoctoral Research Fund of Jiangsu Province, China
文摘The selective catalytic reduction reaction belongs to the gas-solid multiphase reaction, and the adsorption of NH3 and NO on CuO/γ-Al2O3 catalysts plays an important role in the reaction. Performance of the CuO/γ-Al2O3 catalysts was explored in a fixed bed adsorption system. The catalysts maintain nearly 100% NO conversion efficiency at 350℃. Comprehensive tests were carried out to study the adsorption behavior of NH3 and NO over the catalysts. The desorption experiments prove that NH3 and NO are adsorbed on CuO/γ-Al2O3 catalysts. The adsorption behaviors of NH3 and NO were also studied with the in-situ diffusion reflectance infrared Fourier transform spectroscopy methods. The results show that NH3 could be strongly adsorbed on the catalysts, resulting in coordinated NH3 and NH4+. NO adsorption leads to the formation of bridging bidentate nitrate, chelating bidentate nitrate, and chelating nitro. The interaction of NH3 and NO molecules with the Cu2+ present on the CAl2O3 (100) surface was investigated by using a periodic density functional theory. The results show that the adsorption of all the molecules on the Cu2+ site is energetically favorable, whereas NO bound is stronger than that of NH3 with the adsorption site, and key information about the structural and energetic properties was also addressed.
文摘Encapsulation of alkali metals (Li, Na, K, and Rb) into Zn12O12 nanocage has been inves- tigated using density functional theory. Encapsulation of Li and Na atoms is found to be thermodynamically favorable at 298 K and 100 kPa, with negative Gibbs free energy change AG of about -130.12 and -68.43 kJ/mol, respectively. By increasing the size of encapsu- lated atom the process become less favorable so that in the cases of K and Rb encapsulations the AG values are positive. The results indicate that the LUMO, Fermi level, and specially HOMO of the cluster are shifted to higher energies so that the HOMO-LUMO gap of the cluster is significantly narrowed in all the cases. After encapsulation of the alkali metals the work function of cluster is decreased due to the shift of the Fermi level to higher energies. Therefore, the emitted electron current density from the Zn12O12 cluster will be increased.
基金National Natural Science Foundation of China under Grant Nos.10576020 and 10776022
文摘The elastic properties of the wurtzite-type aluminum nitride (w-AlN) are investigated by ab initio plane-wave pseudopotential density functional theory method. The pressure dependences of the normalized primitive cell volume V/Vo, the elastic constants cij, the aggregate elastic modulus (B, G, E), the Poisson's ratio (v), and the Debye temperature θD are successfully obtained. From the elastic constants of the w-AlN under pressure, we find that the w-AlN should be unstable at higher pressure than 61.33 GPa.
基金Project(51071053)supported by the National Natural Science Foundation of ChinaProject(X071117)supported by the Scientific Research Foundation of Guangxi University,ChinaProject(KF0803)supported by the Open Project of Key Laboratory of Materials Design and Preparation Technology of Hunan Province,China
文摘Abstract: With the substitution of part Mg in LaMg3 by Cu, the elastic constants CH and C12 increase while C44 decreases, implying an enhanced Poisson effect and smaller resistance to 〈001〉(100) shear. Furthermore, the bulk modulus B increases, while the shear modulus G, elastic modulus E and anisotropie ratio A are reduced. The calculated Debye temperature of LaCuMg2 is lower, implying the weaker interaction between atoms in LaCuMg2. Then, the stress-strain curves in entire range and the ideal strength at critical strain are studied. The present results show that the lowest ideal tensile strength for LaMg3 and LaCuMg2 is in the 〈100〉 direction. The ideal shear strength on the 〈 1 ^-1 0〉(110) slip system of LaMg3 is greater than LaCuMg2. The density of states and charge density distribution are further studied to understand the inherent mechanism of the mechanical properties.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No.BUPT2009RC0412the National Natural Science Foundation of China under Grant Nos.60908028 and 60971068
文摘Electronic structure and optical properties of the zinc-blende InxGa1-xNyAs1-y system are calculated from the first-principles. Some relative simulations are performed using CA-PZ form of local density approximation in the framework of density functional theory. The supercell of intrinsic GaAs is calculated and optimized by using different methods, and the LDA-CA-PZ gives the most stable structure. The band gap of InzGa1-x As tends to decrease with the increasing In concentration. For the case of In0.0625Ga0.9375NyAs1-y, the band gap will show slight difference when N concentration is larger than 18. 75~. The optical transition of In dopant in GaAs exhibits a red shift, while it is a blue shift for the N dopant in InGaAs. Besides, dielectric function, reflectivity, refractive index and loss function in different doping model of InxGa1-xNyAs1-y are also discussed.
基金Project(2014GXNSFAA118342)supported by Guangxi Natural Science Foundation,ChinaProject supported by Open Foundation of Guangxi Key Laboratory for Advanced Materials and Manufacturing Technology,ChinaProject supported by High-level Innovation Team and Outstanding Scholar Program in Guangxi Colleges(the second batch),China
文摘The electronic structure and optical properties of VO2 and Au-VO2 were studied using density functional theory. The calculation results show that the interaction between Au and O is stronger than that between V and O. There exists not only the covalent bonding but also ionic bonding in Au--O bond. The band gap of Au-VO2 is smaller than that of VO〉 while the dielectric constant, conductivity, and intensity of optical absorption of Au-VO2 are larger than those of VO2.
基金Natural Science Foundation of Hubei Province of China under Grant No.2007ABA035
文摘With the help of supercell method, the first-principle calculations were performed for the study of doping crystal Mg1-xAlxB2 and Mg(B1-yCy)2. Analyzing the variations of the charge distribution and the partial densities of states, we found that the compounds with doping Al to MgB2 compound and/or replacing boron by carbon exhibit new covalent bond effects and unexpected electronic properties, related to superconductivity. The study of the density of states indicates that superconductivity decreases with the increase of Al fraction and carbon concentration. There exists a transition of superconductor to non-superconductor with the change of Al doping fraction. The substitution of boron by carbon results in the decrease of the transition temperature since the decrease of the electron concentration and the lattice constant. The theoretical predictions agree with experimental observations.
文摘Dependence of conductance of corrugated graphene quantum dot(CGQD)on geometrical features includinglength,width,connection and edge is investigated by the first principles calculations.The results demonstrate that theconductance of CGQD with different geometrical features is different from each other.The positions and amplitudesof discrete levels in densities of states and transmission coefficients are sensitive to geometrical features.The I-Vcharacteristics of graphene are modified by size and edge,it is surprise the current does not change monotonously butoscillatory with length.And they are slight change for different connections.
基金Sponsored by the Education Department of Heilongjiang Province(Grant No.11511117).
文摘The SCR reaction mechanism of NO with C3H6catalyzed by CuO was studied by the method of Density Functional Theory(DFT)at the B3LYP/LanL2DZ levels.The optimized geometries of the stationary points on the potential surface were obtained and the transition state was confirmed by IRC and vibration analysis.The activation energy was calculated being 34.26 kJ/mol.It was shown that propylene reacted firstly with Cu forming intermediate,and then nitrogen monoxide immediately reacted with the intermediate to be reduced.It was proved to be a direct interaction mechanism.
基金Supported by the Natural Science Foundation of China under Grant Nos. 10774053 and 2006CB921605
文摘First-principles calculations have been performed for the study of the electronic band structure and ferromagnetic properties of double perovskite Ca2CrSbO6. The density of states, total energy, spin magnetic moment, and charge density were calculated and analyzed in details. It is found that Ca2CrSbO6 has a stable ferromagnetic ground state and the spin magnetic moment per molecule is about 2.99#B. The chromium contributes the most in the total magnetic moments. The results indicate that Ca2CrSbO6 is half-metallic.
基金supported by the grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (16213414)
文摘In this work, a density functional theory (DFT) based first-principles study is carried out to investigate tile potential of phosphorene-like SiS and SiSe monolayers as anode materials for sodium-ion (Na-ion) bat- teries. Results show that both SiS and SiSe have large adsorption energies towards single Na atom of 0.94 and -0.43 eV, owing to the charge transfers from Na to SiS or SiSe. In addition, it is found that the highest Na concentration for both SiS and SiSe is x = 1 with the chemical formulas of NaSiS and NaSiSe, corresponding to the high theoretical specific capacities for Na storages of 445.6 and 250.4 mAh g 1, respectively. Moreover, Na diffusions are very fast and show strong directional behaviors on SiS and SiSe monolayers, with the energy barriers of only 0.135 and 0.158 eV, lower than those of con- ventional anode materials for Na-ion batteries such as Na2Ti3O7 (0.19 eV) and Na3Sb (0.21 eV). Finally, although SiS and SiSe show semiconducting behaviors, they transform to metallic states after adsorbing Na atoms, indicating enhanced electrical conductivity during battery cycling. Given these advantages, it is expected that both SiS and SiSe monolayers are promising anode materials for Na-ion batteries, and in principle, other Na-based batteries as well.
基金supported by the National Natural Science Foundation of China(Grant No.51201079)the Scientific Research Foundation for Introduced Talents of KMUST(Grant No.KKSY201251033)the Scientific Research Fund of Department of Education of Yunnan Province(Grant No.2012Z099)
文摘Based on the density functional theory (DFT), the electronic structures and optical properties of Mg2Pb are calculated by using the local density approximation (LDA) and plane wave pseudo-potential method. The calculation results show that the indirect band gap width of Mg2Pb is 0.02796 eV. The optical properties of MgzPb have isotropic characteristics, the static dielectric function of Mg2Pb is ε1(0) = 10.33 and the refractive index is n0 = 3.5075. The maximum absorption coefficient is 4.8060×10^5 cm-1. The absorption in the photon energy range of 25-40 eV approaches to zero, shows the optical colorless and transparent behaviors.
基金supported by the National Natural Science Foundation of China (Grant No. 10974077)the Natural Science Foundation of Shandong Province, China (Grant No. 2009ZRB01702)the Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J10LA08)
文摘Band structure, density of states, electron density difference, and optical properties of intrinsic β-Ga2O3 and Sn2xGa2(1-x)O3 (x= 3.125%-6.25%) compounds are studied using first-principle calculations based on the density functional theory. The anisotropic optical properties are investigated by means of the complex dielectric function, which are explained by the selection rule of band-to-band transitions. All the calculation results indicate that the conductivity of Sn2xGa2(1-x)O3 is super to β-Ga2O3, and the calculated results consist with experiments that have been reported.
基金supported by the Basic Research Project of High Education (Grant No. ZXH2009C004)the Foundation of CAUC (Grant No. 09QD06X)
文摘We have investigated the effects of B impurities on the structure and mechanical properties of NiA1 intermetallics by using a first-principles pseudopotential total-energy method, based on the density functional theory with a generalized gradient approximation. We found that the impurity B atoms can either replace Ni atoms or Al atoms or both, depending on the surround- ing environment. We demonstrated that the presence of B will cause an increase in brittleness and a decrease in the ductility of NiAI for the Al-substitutional case, while causing an increase in the ductility of NiAl for the Ni-subtitutional case, based on the calculated elastic constants and the empirical criterions. This indicates that the effects of B impurities on the mechanical prop- erties of NiAl intermetallics are quite composition-dependent.