A new type of airtight wall with the combination of foamed concrete and pier support was designed in this study. Based on the theories and models related to the foamed concrete and blasting shock load, using the numer...A new type of airtight wall with the combination of foamed concrete and pier support was designed in this study. Based on the theories and models related to the foamed concrete and blasting shock load, using the numerical analysis method, this study obtains the new material's mechanical and destruction laws through analyzing its reaction to different conditions of load (mining and shock waves), airtight wall thickness (1.2, 1.5, 1.8, 2.1 m) and steel pipe diameters (400, 450, 500 and 600 mm). The results show that: ①foamed concrete can have very good suspension, and the pier column support is the main carrier of roof pressure; ② the damaged area of foamed concrete decreases as the foamed concrete thickness increases. Under impact loading, the thickness of the foamed concrete wall plays a more obvious role in retaining its integrity; ③under the same mining pressure, the damage area increases as the steel pipe diameter increases; ④ with additional mining stress increase, under whether static load or impact load, the stress on the foamed concrete and steel pipe will also increase gradually, therefore the actual airtight wall design will need to be based on specific circumstances in steel stress.展开更多
The stress-strain curves of confined concrete were obtained based on tests of seven cross-shaped columns confined by stirrups under axial load. The experiment results showed that the strength and deformation of confin...The stress-strain curves of confined concrete were obtained based on tests of seven cross-shaped columns confined by stirrups under axial load. The experiment results showed that the strength and deformation of confined concrete can be enhanced effectively by stirrups for cross-shaped columns. Compared with the non-confined concrete, when the stirrup characteristic value is in the range of 0.046-0.230, the confined concrete compressive strengths has an increase of 8%-43%, and the strain corresponding to the peak stress of confined concrete has an increase of 25%-195%. According to the test results, the effects of stirrup characteristic and stirrup spacing on the compressive strength and strain of confined concrete were analysed. It is shown that the compressive strength of confined concrete has a linear relationship with the product of stirrup characteristic value and stirrup effective restraint coefficient, and the strain corresponding to the peak stress of confined concrete has a nonlinear relationship with the product of stirrup characteristic value and stirrup effective restraint coefficient. The stress-strain curve equation of confined concrete was proposed for cross-shaped columns, and the calculated curves are in good agreement with the experimental curves.展开更多
This paper is devoted to investigate experimentally the strength evaluation of normal strength and self-compacting reinforced concrete beams under the effect of impact. The experimental work includes investigating of ...This paper is devoted to investigate experimentally the strength evaluation of normal strength and self-compacting reinforced concrete beams under the effect of impact. The experimental work includes investigating of eight (180×250×1,200 ram) beam specimens. Three variables are adopted in this paper: tensile reinforcement ratio, type of concrete (NSC (normal strength concrete) or SCC (self-compacting concrete)) and height of falling (dropped) ball (1 m or 2 m). The experimental results indicated that the number of blows increased with increasing of tensile reinforcement ratio and compressive strength by about 35% and 123%, respectively. Maximum mid-span deflection was increased with increasing falling height and decreased with increasing reinforcement ration and concrete compressive strength. The increasing of concrete compressive strength is more effective than increasing of the reinforcement ratio, it appeared that the percentage of increasing exceeds 50%. The ultimate strength is decreased with increasing the falling height for about 34%-44%.展开更多
文摘A new type of airtight wall with the combination of foamed concrete and pier support was designed in this study. Based on the theories and models related to the foamed concrete and blasting shock load, using the numerical analysis method, this study obtains the new material's mechanical and destruction laws through analyzing its reaction to different conditions of load (mining and shock waves), airtight wall thickness (1.2, 1.5, 1.8, 2.1 m) and steel pipe diameters (400, 450, 500 and 600 mm). The results show that: ①foamed concrete can have very good suspension, and the pier column support is the main carrier of roof pressure; ② the damaged area of foamed concrete decreases as the foamed concrete thickness increases. Under impact loading, the thickness of the foamed concrete wall plays a more obvious role in retaining its integrity; ③under the same mining pressure, the damage area increases as the steel pipe diameter increases; ④ with additional mining stress increase, under whether static load or impact load, the stress on the foamed concrete and steel pipe will also increase gradually, therefore the actual airtight wall design will need to be based on specific circumstances in steel stress.
基金Supported by National Natural Science Foundation of China (No. 50878141)
文摘The stress-strain curves of confined concrete were obtained based on tests of seven cross-shaped columns confined by stirrups under axial load. The experiment results showed that the strength and deformation of confined concrete can be enhanced effectively by stirrups for cross-shaped columns. Compared with the non-confined concrete, when the stirrup characteristic value is in the range of 0.046-0.230, the confined concrete compressive strengths has an increase of 8%-43%, and the strain corresponding to the peak stress of confined concrete has an increase of 25%-195%. According to the test results, the effects of stirrup characteristic and stirrup spacing on the compressive strength and strain of confined concrete were analysed. It is shown that the compressive strength of confined concrete has a linear relationship with the product of stirrup characteristic value and stirrup effective restraint coefficient, and the strain corresponding to the peak stress of confined concrete has a nonlinear relationship with the product of stirrup characteristic value and stirrup effective restraint coefficient. The stress-strain curve equation of confined concrete was proposed for cross-shaped columns, and the calculated curves are in good agreement with the experimental curves.
文摘This paper is devoted to investigate experimentally the strength evaluation of normal strength and self-compacting reinforced concrete beams under the effect of impact. The experimental work includes investigating of eight (180×250×1,200 ram) beam specimens. Three variables are adopted in this paper: tensile reinforcement ratio, type of concrete (NSC (normal strength concrete) or SCC (self-compacting concrete)) and height of falling (dropped) ball (1 m or 2 m). The experimental results indicated that the number of blows increased with increasing of tensile reinforcement ratio and compressive strength by about 35% and 123%, respectively. Maximum mid-span deflection was increased with increasing falling height and decreased with increasing reinforcement ration and concrete compressive strength. The increasing of concrete compressive strength is more effective than increasing of the reinforcement ratio, it appeared that the percentage of increasing exceeds 50%. The ultimate strength is decreased with increasing the falling height for about 34%-44%.