Cyanide-free silver electroplating was conducted in thiosulfate baths containing AgNO3 and AgBr major salts, respectively. The effects of major salt content and current density on surface quality, deposition rate and ...Cyanide-free silver electroplating was conducted in thiosulfate baths containing AgNO3 and AgBr major salts, respectively. The effects of major salt content and current density on surface quality, deposition rate and microhardness of Ag coatings were investigated. The optimized electroplating parameters were established. The adhesion strength of Ag coating on Cu substrate was evaluated and the grain size of Ag coating was measured under optimized electroplating parameters. The optimized AgNO3 content is 40 g/L with current density of 0.25 A/dm2. The deposited bright, smooth, and well adhered Ag coating had nanocrystalline grains with mean size of 35 nm. The optimized AgBr content was 30 g/L with current density of 0.20 A/dm2. The resultant Ag coating had nanocrystalline grains with mean size of 55 nm. Compared with the bath containing AgBr main salt, the bath containing AgNO3 main salt had a wider current density range, and corresponding Ag coating had a higher microhardness and a smaller grain size.展开更多
A cellular automaton(CA) modeling of discontinuous dynamic recrystallization(DDRX) of a near-α Ti-6Al-2Zr-1Mo-1V(TA15) isothermally compressed in the β single phase field was presented.In the CA model,nucleati...A cellular automaton(CA) modeling of discontinuous dynamic recrystallization(DDRX) of a near-α Ti-6Al-2Zr-1Mo-1V(TA15) isothermally compressed in the β single phase field was presented.In the CA model,nucleation of the β-DDRX and the growth of recrystallized grains(re-grains) were considered and visibly simulated by the CA model.The driving force of re-grain growth was provided by dislocation density accumulating around the grain boundaries.To verify the CA model,the predicted flow stress by the CA model was compared with the experimental data.The comparison showed that the average relative errors were10.2%,10.1%and 6%,respectively,at 1.0,0.1 and 0.01 s^-1 of 1020 ℃,and were 10.2%,11.35%and 7.5%,respectively,at 1.0,0.1and 0.01 s^-1 of 1050 ℃.The CA model was further applied to predicting the average growth rate,average re-grain size and recrystallization kinetics.The simulated results showed that the average growth rate increases with the increasing strain rate or temperature,while the re-grain size increases with the decreasing strain rate;the volume fraction of recrystallization decreases with the increasing strain rate or decreasing temperature.展开更多
By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-f...By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-form identity.展开更多
Firstly, a vector loop algebra G3 is constructed, by use of it multi-component KN hierarchy is obtained. Further, by taking advantage of the extending vector loop algebras G6 and G9 of G3 the double integrable couplin...Firstly, a vector loop algebra G3 is constructed, by use of it multi-component KN hierarchy is obtained. Further, by taking advantage of the extending vector loop algebras G6 and G9 of G3 the double integrable couplings of the multi-component KN hierarchy are worked out respectively. Finally, Hamiltonian structures of obtained system are given by quadratic-form identity.展开更多
For the requirement of safe and stable operation,the combined sealing structure was used for reciprocating motion in the deep sea high-pressure environment,and the effects of different seawater depths and shaft moveme...For the requirement of safe and stable operation,the combined sealing structure was used for reciprocating motion in the deep sea high-pressure environment,and the effects of different seawater depths and shaft movement speed on the sealing performance of the combined sealing structure were studied.The change rule of the sealing performance of the combined sealing structure of reciprocating motion under different working conditions is proved.The study shows that in the combined sealing structure of reciprocating movement,the Von Mises stress and the contact stress of the O-ring varies with the direction of the shaft movement.The Von Mises stress and contact stress of the O-ring,the Von Mises stress and the contact stress on each sealing lip of the slip ring gradually increase with the increasing of seawater depths.At the same time,the Von Mises stress of the O-ring which in the process of the shaft upward movement is greater than the shaft downward movement,making the shaft upward movement more likely to cause the O-ring relaxation and fatigue.The shaft movement speed has no significant influence on the Von Mises stress and contact stress of the O-ring.The research results provide theoretical guidance and technical support for the selection and optimization of the geometrical parameters of the combined sealing structure in the deep-sea high-pressure environment.展开更多
First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadi...First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadium phosphide compounds was calculated to assess their structural stability. The charge density distribution and densities of states of vanadium phosphides were discussed to study further their electronic structures. The results show that the structure of metal-rich compounds is considerably more stable than the phosphorus-rich compositions,and covalent bond exists between the V and P atoms of V3P,V2P,VP,VP2 and VP4.展开更多
Two kinds of higher-dimensional Lie algebras and their loop algebras are introduced, for which a few expanding integrable models including the coupling integrable couplings of the Broer-Kaup (BK) hierarchy and the d...Two kinds of higher-dimensional Lie algebras and their loop algebras are introduced, for which a few expanding integrable models including the coupling integrable couplings of the Broer-Kaup (BK) hierarchy and the dispersive long wave (DLW) hierarchy as well as the TB hierarchy are obtained. From the reductions of the coupling integrable couplings, the corresponding coupled integrable couplings of the BK equation, the DLW equation, and the TB equation are obtained, respectively. Especiaily, the coupling integrable coupling of the TB equation reduces to a few integrable couplings of the well-known mKdV equation. The Hamiltonian structures of the coupling integrable couplings of the three kinds of soliton hierarchies are worked out, respectively, by employing the variationai identity. Finally, we decompose the BK hierarchy of evolution equations into x-constrained flows and tn-eonstrained flows whose adjoint representations and the Lax pairs are given.展开更多
(E) -4-chloro-4' -ethoxystilbene (2a) and (E) -4, 4' - dichlorostilbene (2b) were synthesized by the Witting-Homer reaction. The crystals of 2a and 2b were prepared through solvent evaporation and characteri...(E) -4-chloro-4' -ethoxystilbene (2a) and (E) -4, 4' - dichlorostilbene (2b) were synthesized by the Witting-Homer reaction. The crystals of 2a and 2b were prepared through solvent evaporation and characterized by the single-crystal X- ray diffraction. Molecular structure analysis confirms the E- configuration of C=C bond. The crystal of 2a reveals an orthorhombic and space group Pna21 structure while 2b shows a monoclinic and space group P21/c structure. The electronic structures of 2a and 2b were optimized at B3LYP/6-311 + + G (d, p) level. The Hirshfeld surface and fingerprint plot indicate close O-H and C1-H contacts and π-π stacking in 2a and 2b. Molecular electrostatic potential shows that the O and C1 atoms of 2a and C1 atoms of 2b have the minimum energies and they are more likely to be attacked by electrophiles in reaction. Frontier molecular orbitals analysis demonstrates that the △ELuMO_HOMO of 2a and 2b are 3.85 and 3.91 eV, respectively.展开更多
A type of higher-dimensionaJ loop algebra is constructed from which an isospectral problem is established. It follows that an integrable coupling, actually an extended integrable model of the existed solitary hierarch...A type of higher-dimensionaJ loop algebra is constructed from which an isospectral problem is established. It follows that an integrable coupling, actually an extended integrable model of the existed solitary hierarchy of equations, is obtained by taking use of the zero curvature equation, whose Hamiltonian structure is worked out by employing the constructed quadratic identity.展开更多
The binding energy and generalized stacking-fault energy (GSFE) are two critical interface properties of two dimensional layered materials, and it is still unclear how neighboring layers affect the interface energy of...The binding energy and generalized stacking-fault energy (GSFE) are two critical interface properties of two dimensional layered materials, and it is still unclear how neighboring layers affect the interface energy of adjacent layers. Here, we investigate the effect of neighboring layers by comparing the differences of binding energy and GSFE between trilayer heterostructures (graphene/graphene/graphene, graphene/graphene/boron nitride,boron nitride/graphene/boron nitride) and bilayer heterostructures (graphene/graphene,graphene/boron nitride) using density functional theory. The binding energy of the adjacent layers changes from -2.3% to 22.55% due to the effect of neighboring layer, with a very small change of the interlayer distance. Neighboring layers also make a change from -2% to 10% change the GSFE, depending on the property of the interface between adjacent layers. In addition, a new simple expression is proven to describe the GSFE landscape of graphene-like structure with high accuracy.展开更多
The geometries of one-electron reduced/oxidized species ([TOP]-/[VOP] +) of vanadyl por- phyrin (VOP) have been calculated with PBE1PBE method. The results show that for both [VOP]- and [VOP]+ the ground states ...The geometries of one-electron reduced/oxidized species ([TOP]-/[VOP] +) of vanadyl por- phyrin (VOP) have been calculated with PBE1PBE method. The results show that for both [VOP]- and [VOP]+ the ground states are triplet, in which one of the two unpaired electron occupies the dxy orbital of the V atom while the other occupies the n-orbital of porphyrin ring. Thus both [VOP]- and [VOP]+ can be considered as n-radicals. The ground state of neutral VOP molecule is doublet with the unpaired electron occupying dxy orbital of V atom. In contract to the C4v symmetry of neutral VOP molecule, [VOP]- anion has a "rectangular" distorted C2v structure due to Jahn-Teller effect. The linear vibronic coupling constants for the Jahn-Teller active modes of [TOP]- were evaluated and the node patterns of frontier KS orbitals are used to explain the reason why the distortion occurs along specific modes. The ground state [VOP]+ has a porphyrin ring with pronounced bond length alternation due to pseudo-Jahn-Teller effect, causing its symmetry declined from C4v to Ca. The bond length alternation is well explained with the node patterns of re-constructed frontier KS orbitals.展开更多
Structural stabilities, thermodynamics stabilities, elastic properties and electronic structures of Mgl7Al12, Al2Y and AlaBa phases were analyzed by first-principles calculations with Castep and Drool3 program based o...Structural stabilities, thermodynamics stabilities, elastic properties and electronic structures of Mgl7Al12, Al2Y and AlaBa phases were analyzed by first-principles calculations with Castep and Drool3 program based on the density functional theory. The calculated results of heat of formation indicate that AI2Y phase has the strongest alloying ability. The calculated thermodynamic properties show that the thermal stability of these compounds gradually increases in the order ofMgl7Al12, A12Y and Al4Ba phases. Y or Ba addition to the Mg-Al alloys could improve the heat resistance. The calculated bulk modulus B, shear modulus G, elastic modulus E and Poisson ratio v show that the adding Y or Ba to Mg-Al alloys could promote the brittleness and stiffness, and reduce tenacity and plasticity by forming Al4Ba and Al2Y phases. The calculated cohesive energy and density of state (DOS) show that Al2Y has the strongest structural stability, then AlaBa and finally Mg17Al12. The calculated electronic structures show that Al2Y has the strongest structure stability because of the strong ionic bonds and covalent bonds combined action.展开更多
Neuronal nitric oxide synthase (nNOS) is mainly expressed in neurons,to some extent in astrocytes and neuronal stem cells.The alternative splicing of nNOS mRNA generates 5 isoforms of nNOS,including nNOS-,nNOS-,nNOS...Neuronal nitric oxide synthase (nNOS) is mainly expressed in neurons,to some extent in astrocytes and neuronal stem cells.The alternative splicing of nNOS mRNA generates 5 isoforms of nNOS,including nNOS-,nNOS-,nNOS-,nNOS-and nNOS-2.Monomer of nNOS is inactive,and dimer is the active form.Dimerization requires tetrahydrobiopterin (BH 4),heme and L-arginine binding.Regulation of nNOS expression relies largely on cAMP response element-binding protein (CREB) activity,and nNOS activity is regulated by heat shock protein 90 (HSP90)/HSP70,calmodulin (CaM),phosphorylation and dephosphorylation at Ser847 and Ser1412,and the protein inhibitor of nNOS (PIN).There are primarily 9 nNOS-interacting proteins,including post-synaptic density protein 95 (PSD95),clathrin assembly lymphoid leukemia (CALM),calcium/calmodulindependent protein kinase II alpha (CAMKIIA),Disks large homolog 4 (DLG4),DLG2,6-phosphofructokinase,muscle type (PFK-M),carboxy-terminal PDZ ligand of nNOS (CAPON) protein,syntrophin and dynein light chain (LC).Among them,PSD95,CAPON and PFK-M are important nNOS adapter proteins in neurons.The interaction of PSD95 with nNOS controls synapse formation and is implicated in N-methyl-D-aspartic acid-induced neuronal death.nNOS-derived NO is implicated in synapse loss-mediated early cognitive/motor deficits in several neuropathological states,and negatively regulates neurogenesis under physiological and pathological conditions.展开更多
A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations.The variational iden...A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations.The variational identities under non-degenerate,symmetric and ad-invariant bilinear forms are used to furnish Hamiltonian structures of the resulting bi-integrable couplings.A special case of the suggested loop algebras yields nonlinear bi-integrable Hamiltonian couplings for the AKNS soliton hierarchy.展开更多
We reported a facile and robust one-pot wet chemistry strategy to achieve the growth of uniform three dimensional(3D) MoSe_2 ultrathin nanostructures on graphene nanosheets to form high quality MoSe_2/rGO hybrid nan...We reported a facile and robust one-pot wet chemistry strategy to achieve the growth of uniform three dimensional(3D) MoSe_2 ultrathin nanostructures on graphene nanosheets to form high quality MoSe_2/rGO hybrid nanostructures.Owing to the graphene as a support,it can significantly prevent the aggregation of MoSe_2 and the distribution of MoSe_2 on graphene was highly uniform.Importantly,due to the unique structures,the as-harvested MoSe_2/rGO hybrid exhibited excellent electrochemical performance as anode materials for sodium-ion battery(SIB).When evaluated in a half cell system,the MoSe_2/rGO hybrid nanostructures could deliver a capacity of 200.2 mA h g^(-1) at8 A g^(-1) and maintain a capacity of 230.1 mA h g^(-1) over 100 cycles at 5 A g^(-1).When coupled with Na_3V_2(PO_4)_3 cathode in a full cell system,the material could deliver a discharge capacity of 363.1 mA h g^(-1) at the current density of 0.5 A g^(-1).Moreover,a discharge capacity of 56.4 mA h g^(-1) could be achieved even at a high current density of 10 A g^(-1),which clearly suggested the high power capability of MoSe_2/rGO hybrid nanostructures for sodium ion energy storage.展开更多
Compared with Gaussian wind loads, there is a higher probability of strong suction fluctuations occurrence for non-Gaussian wind pressures. These instantaneous and intermittent fluctuations are the initial cause of lo...Compared with Gaussian wind loads, there is a higher probability of strong suction fluctuations occurrence for non-Gaussian wind pressures. These instantaneous and intermittent fluctuations are the initial cause of local damage to roof structures, par- ticularly at the edges and comers of long-span roofs. Thus, comparative errors would occur if a Gaussian model is used to de- scribe a non-Gaussian wind load, and structural security would not be guaranteed. This paper presents a simplified method based on the inverse fast Fourier transform (IFFT), in which the amplitude spectrum is established via a target power spectrum. Also, the phase spectrum is constructed by introducing the exponential peak generation (EPG) model. Finally, a random pro- cess can be generated via IFFT that meets the specified power spectral density (PSD), skewness and kurtosis. In contrast to a wind tunnel experiment, this method can avoid the coupled relation between the non-Gaussian and the power spectrum char- acteristics, and lead to the desired computational efficiency. Its fitting accuracy is not affected by phase spectrum. Moreover, the fitting precision of the kurtosis and PSD parameters can be guaranteed. In a few cases, the fitting precision of the skewness parameter is fairly poor, but kurtosis is more important than skewness in the description of the non-Gaussian characteristics. Above all, this algorithm is simple and stable and would be an effective method to simulate a non-Gaussian signal.展开更多
It is still challenging to develop suitable cathode structures for high-rate and stable aqueous Zn-ion batteries.Herein,a phosphating-assisted interfacial engineering strategy is designed for the controllable conversi...It is still challenging to develop suitable cathode structures for high-rate and stable aqueous Zn-ion batteries.Herein,a phosphating-assisted interfacial engineering strategy is designed for the controllable conversion of NiCo_(2)S_(4) nanosheets into heterostructured NiCoP/NiCo_(2)S_(4) as the cathodes in aqueous Zn-ion batteries.The multicomponent heterostructures with rich interfaces can not only improve the electrical conductivity but also enhance the diffusion pathways for Zn-ion storage.As expected,the NiCoP/NiCo_(2)S_(4) electrode has high performance with a large specific capacity of 251.1 mA h g^(−1) at a high current density of 10 A g^(−1) and excellent rate capability(retaining about 76%even at 50 A g^(−1)).Accordingly,the Zn-ion battery using NiCoP/NiCo_(2)S_(4) as the cathode delivers a high specific capacity(265.1 mA h g^(−1) at 5 A g^(−1)),a long-term cycling stability(96.9%retention after 5000 cycles),and a competitive energy density(444.7W h kg^(−1) at the power density of 8.4 kW kg^(−1)).This work therefore provides a simple phosphating-assisted interfacial engineering strategy to construct heterostructured electrode materials with rich interfaces for the development of high-performance energy storage devices in the future.展开更多
基金Project (50771042) supported by the National Natural Science Foundation of ChinaProjects (1041005100052009HASTIT023) supported by the Program for Science and Technology Innovation Talents of Henan Province,China
文摘Cyanide-free silver electroplating was conducted in thiosulfate baths containing AgNO3 and AgBr major salts, respectively. The effects of major salt content and current density on surface quality, deposition rate and microhardness of Ag coatings were investigated. The optimized electroplating parameters were established. The adhesion strength of Ag coating on Cu substrate was evaluated and the grain size of Ag coating was measured under optimized electroplating parameters. The optimized AgNO3 content is 40 g/L with current density of 0.25 A/dm2. The deposited bright, smooth, and well adhered Ag coating had nanocrystalline grains with mean size of 35 nm. The optimized AgBr content was 30 g/L with current density of 0.20 A/dm2. The resultant Ag coating had nanocrystalline grains with mean size of 55 nm. Compared with the bath containing AgBr main salt, the bath containing AgNO3 main salt had a wider current density range, and corresponding Ag coating had a higher microhardness and a smaller grain size.
基金Projects (50935007,51175428) supported by the National Natural Science Foundation of ChinaProject (2010CB731701) supported by the National Basic Research Program of China+2 种基金Project (NPU-FFR-JC20100229) supported by the Foundation for Fundamental Research of Northwestern Polytechnical University in ChinaProject (27-TZ-2010) supported by the Research Fund of the State Key Laboratory of Solidification Processing,ChinaProject (B08040) supported by the Program of Introducing Talents of Discipline to University,China
文摘A cellular automaton(CA) modeling of discontinuous dynamic recrystallization(DDRX) of a near-α Ti-6Al-2Zr-1Mo-1V(TA15) isothermally compressed in the β single phase field was presented.In the CA model,nucleation of the β-DDRX and the growth of recrystallized grains(re-grains) were considered and visibly simulated by the CA model.The driving force of re-grain growth was provided by dislocation density accumulating around the grain boundaries.To verify the CA model,the predicted flow stress by the CA model was compared with the experimental data.The comparison showed that the average relative errors were10.2%,10.1%and 6%,respectively,at 1.0,0.1 and 0.01 s^-1 of 1020 ℃,and were 10.2%,11.35%and 7.5%,respectively,at 1.0,0.1and 0.01 s^-1 of 1050 ℃.The CA model was further applied to predicting the average growth rate,average re-grain size and recrystallization kinetics.The simulated results showed that the average growth rate increases with the increasing strain rate or temperature,while the re-grain size increases with the decreasing strain rate;the volume fraction of recrystallization decreases with the increasing strain rate or decreasing temperature.
基金Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1410800the Science Foundation of Key Laboratory of Mathematics Mechanization under Grant No.KLMM0806+1 种基金the Shanghai Leading Academic Discipline Project under Grant No.J50101Key Disciplines of Shanghai Municipality (S30104)
文摘By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-form identity.
文摘Firstly, a vector loop algebra G3 is constructed, by use of it multi-component KN hierarchy is obtained. Further, by taking advantage of the extending vector loop algebras G6 and G9 of G3 the double integrable couplings of the multi-component KN hierarchy are worked out respectively. Finally, Hamiltonian structures of obtained system are given by quadratic-form identity.
基金supported by the National Natural Science Foundation of China (Grant No.51705145, 51779092)the National Key Research and Development Program of China (Grant No.2016YFC0300502 and No.2017YFC0307501)+1 种基金Natural Science Foundation of Hunan Province of China (Grant No.2019JJ50182)Research Foundation of Education Bureau of Hunan Province (Grant No.18B205)
文摘For the requirement of safe and stable operation,the combined sealing structure was used for reciprocating motion in the deep sea high-pressure environment,and the effects of different seawater depths and shaft movement speed on the sealing performance of the combined sealing structure were studied.The change rule of the sealing performance of the combined sealing structure of reciprocating motion under different working conditions is proved.The study shows that in the combined sealing structure of reciprocating movement,the Von Mises stress and the contact stress of the O-ring varies with the direction of the shaft movement.The Von Mises stress and contact stress of the O-ring,the Von Mises stress and the contact stress on each sealing lip of the slip ring gradually increase with the increasing of seawater depths.At the same time,the Von Mises stress of the O-ring which in the process of the shaft upward movement is greater than the shaft downward movement,making the shaft upward movement more likely to cause the O-ring relaxation and fatigue.The shaft movement speed has no significant influence on the Von Mises stress and contact stress of the O-ring.The research results provide theoretical guidance and technical support for the selection and optimization of the geometrical parameters of the combined sealing structure in the deep-sea high-pressure environment.
基金Project(20871101)supported by the National Natural Science Foundation of ChinaProject(09C945)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadium phosphide compounds was calculated to assess their structural stability. The charge density distribution and densities of states of vanadium phosphides were discussed to study further their electronic structures. The results show that the structure of metal-rich compounds is considerably more stable than the phosphorus-rich compositions,and covalent bond exists between the V and P atoms of V3P,V2P,VP,VP2 and VP4.
基金Supported by the National Science Foundation of China under Grant No.10971031the Natural Science Foundation of Shandong Province under Grant No.ZR2009AL021
文摘Two kinds of higher-dimensional Lie algebras and their loop algebras are introduced, for which a few expanding integrable models including the coupling integrable couplings of the Broer-Kaup (BK) hierarchy and the dispersive long wave (DLW) hierarchy as well as the TB hierarchy are obtained. From the reductions of the coupling integrable couplings, the corresponding coupled integrable couplings of the BK equation, the DLW equation, and the TB equation are obtained, respectively. Especiaily, the coupling integrable coupling of the TB equation reduces to a few integrable couplings of the well-known mKdV equation. The Hamiltonian structures of the coupling integrable couplings of the three kinds of soliton hierarchies are worked out, respectively, by employing the variationai identity. Finally, we decompose the BK hierarchy of evolution equations into x-constrained flows and tn-eonstrained flows whose adjoint representations and the Lax pairs are given.
文摘(E) -4-chloro-4' -ethoxystilbene (2a) and (E) -4, 4' - dichlorostilbene (2b) were synthesized by the Witting-Homer reaction. The crystals of 2a and 2b were prepared through solvent evaporation and characterized by the single-crystal X- ray diffraction. Molecular structure analysis confirms the E- configuration of C=C bond. The crystal of 2a reveals an orthorhombic and space group Pna21 structure while 2b shows a monoclinic and space group P21/c structure. The electronic structures of 2a and 2b were optimized at B3LYP/6-311 + + G (d, p) level. The Hirshfeld surface and fingerprint plot indicate close O-H and C1-H contacts and π-π stacking in 2a and 2b. Molecular electrostatic potential shows that the O and C1 atoms of 2a and C1 atoms of 2b have the minimum energies and they are more likely to be attacked by electrophiles in reaction. Frontier molecular orbitals analysis demonstrates that the △ELuMO_HOMO of 2a and 2b are 3.85 and 3.91 eV, respectively.
基金Supported by the Scientific Research Ability Foundation for Young Teacher of Northwest Normal University under Grant No.NWNULKQN -10-25
文摘A type of higher-dimensionaJ loop algebra is constructed from which an isospectral problem is established. It follows that an integrable coupling, actually an extended integrable model of the existed solitary hierarchy of equations, is obtained by taking use of the zero curvature equation, whose Hamiltonian structure is worked out by employing the constructed quadratic identity.
文摘The binding energy and generalized stacking-fault energy (GSFE) are two critical interface properties of two dimensional layered materials, and it is still unclear how neighboring layers affect the interface energy of adjacent layers. Here, we investigate the effect of neighboring layers by comparing the differences of binding energy and GSFE between trilayer heterostructures (graphene/graphene/graphene, graphene/graphene/boron nitride,boron nitride/graphene/boron nitride) and bilayer heterostructures (graphene/graphene,graphene/boron nitride) using density functional theory. The binding energy of the adjacent layers changes from -2.3% to 22.55% due to the effect of neighboring layer, with a very small change of the interlayer distance. Neighboring layers also make a change from -2% to 10% change the GSFE, depending on the property of the interface between adjacent layers. In addition, a new simple expression is proven to describe the GSFE landscape of graphene-like structure with high accuracy.
文摘The geometries of one-electron reduced/oxidized species ([TOP]-/[VOP] +) of vanadyl por- phyrin (VOP) have been calculated with PBE1PBE method. The results show that for both [VOP]- and [VOP]+ the ground states are triplet, in which one of the two unpaired electron occupies the dxy orbital of the V atom while the other occupies the n-orbital of porphyrin ring. Thus both [VOP]- and [VOP]+ can be considered as n-radicals. The ground state of neutral VOP molecule is doublet with the unpaired electron occupying dxy orbital of V atom. In contract to the C4v symmetry of neutral VOP molecule, [VOP]- anion has a "rectangular" distorted C2v structure due to Jahn-Teller effect. The linear vibronic coupling constants for the Jahn-Teller active modes of [TOP]- were evaluated and the node patterns of frontier KS orbitals are used to explain the reason why the distortion occurs along specific modes. The ground state [VOP]+ has a porphyrin ring with pronounced bond length alternation due to pseudo-Jahn-Teller effect, causing its symmetry declined from C4v to Ca. The bond length alternation is well explained with the node patterns of re-constructed frontier KS orbitals.
基金Project(2011DFA50520) supported by the International Cooperation of Ministry of Science and Technology of ChinaProject(50975263) supported by the National Natural Science Foundation of ChinaProject(2010-78) supported by the Shanxi Provincial Foundation for Returned Scholars,China
文摘Structural stabilities, thermodynamics stabilities, elastic properties and electronic structures of Mgl7Al12, Al2Y and AlaBa phases were analyzed by first-principles calculations with Castep and Drool3 program based on the density functional theory. The calculated results of heat of formation indicate that AI2Y phase has the strongest alloying ability. The calculated thermodynamic properties show that the thermal stability of these compounds gradually increases in the order ofMgl7Al12, A12Y and Al4Ba phases. Y or Ba addition to the Mg-Al alloys could improve the heat resistance. The calculated bulk modulus B, shear modulus G, elastic modulus E and Poisson ratio v show that the adding Y or Ba to Mg-Al alloys could promote the brittleness and stiffness, and reduce tenacity and plasticity by forming Al4Ba and Al2Y phases. The calculated cohesive energy and density of state (DOS) show that Al2Y has the strongest structural stability, then AlaBa and finally Mg17Al12. The calculated electronic structures show that Al2Y has the strongest structure stability because of the strong ionic bonds and covalent bonds combined action.
基金supported by the National Natural Science Foundation of China(No. 30971021,81030023 and 30901550)
文摘Neuronal nitric oxide synthase (nNOS) is mainly expressed in neurons,to some extent in astrocytes and neuronal stem cells.The alternative splicing of nNOS mRNA generates 5 isoforms of nNOS,including nNOS-,nNOS-,nNOS-,nNOS-and nNOS-2.Monomer of nNOS is inactive,and dimer is the active form.Dimerization requires tetrahydrobiopterin (BH 4),heme and L-arginine binding.Regulation of nNOS expression relies largely on cAMP response element-binding protein (CREB) activity,and nNOS activity is regulated by heat shock protein 90 (HSP90)/HSP70,calmodulin (CaM),phosphorylation and dephosphorylation at Ser847 and Ser1412,and the protein inhibitor of nNOS (PIN).There are primarily 9 nNOS-interacting proteins,including post-synaptic density protein 95 (PSD95),clathrin assembly lymphoid leukemia (CALM),calcium/calmodulindependent protein kinase II alpha (CAMKIIA),Disks large homolog 4 (DLG4),DLG2,6-phosphofructokinase,muscle type (PFK-M),carboxy-terminal PDZ ligand of nNOS (CAPON) protein,syntrophin and dynein light chain (LC).Among them,PSD95,CAPON and PFK-M are important nNOS adapter proteins in neurons.The interaction of PSD95 with nNOS controls synapse formation and is implicated in N-methyl-D-aspartic acid-induced neuronal death.nNOS-derived NO is implicated in synapse loss-mediated early cognitive/motor deficits in several neuropathological states,and negatively regulates neurogenesis under physiological and pathological conditions.
基金Project supported by the State Administration of Foreign Experts Affairs of Chinathe National Natural Science Foundation of China (Nos.10971136,10831003,61072147,11071159)+3 种基金the Chunhui Plan of the Ministry of Education of Chinathe Innovation Project of Zhejiang Province (No.T200905)the Natural Science Foundation of Shanghai (No.09ZR1410800)the Shanghai Leading Academic Discipline Project (No.J50101)
文摘A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations.The variational identities under non-degenerate,symmetric and ad-invariant bilinear forms are used to furnish Hamiltonian structures of the resulting bi-integrable couplings.A special case of the suggested loop algebras yields nonlinear bi-integrable Hamiltonian couplings for the AKNS soliton hierarchy.
基金supported by the start-up funding from Xi'an Jiaotong University,the Fundamental Research Funds for the Central Universities(2015qngzl2)the China National Funds for Excellent Young Scientists(21522106)the National Natural Science Foundation of China(21371140)
文摘We reported a facile and robust one-pot wet chemistry strategy to achieve the growth of uniform three dimensional(3D) MoSe_2 ultrathin nanostructures on graphene nanosheets to form high quality MoSe_2/rGO hybrid nanostructures.Owing to the graphene as a support,it can significantly prevent the aggregation of MoSe_2 and the distribution of MoSe_2 on graphene was highly uniform.Importantly,due to the unique structures,the as-harvested MoSe_2/rGO hybrid exhibited excellent electrochemical performance as anode materials for sodium-ion battery(SIB).When evaluated in a half cell system,the MoSe_2/rGO hybrid nanostructures could deliver a capacity of 200.2 mA h g^(-1) at8 A g^(-1) and maintain a capacity of 230.1 mA h g^(-1) over 100 cycles at 5 A g^(-1).When coupled with Na_3V_2(PO_4)_3 cathode in a full cell system,the material could deliver a discharge capacity of 363.1 mA h g^(-1) at the current density of 0.5 A g^(-1).Moreover,a discharge capacity of 56.4 mA h g^(-1) could be achieved even at a high current density of 10 A g^(-1),which clearly suggested the high power capability of MoSe_2/rGO hybrid nanostructures for sodium ion energy storage.
基金supported by the National Natural Science Fund for Distinguished Young Scholars (Grant No. 51125031)
文摘Compared with Gaussian wind loads, there is a higher probability of strong suction fluctuations occurrence for non-Gaussian wind pressures. These instantaneous and intermittent fluctuations are the initial cause of local damage to roof structures, par- ticularly at the edges and comers of long-span roofs. Thus, comparative errors would occur if a Gaussian model is used to de- scribe a non-Gaussian wind load, and structural security would not be guaranteed. This paper presents a simplified method based on the inverse fast Fourier transform (IFFT), in which the amplitude spectrum is established via a target power spectrum. Also, the phase spectrum is constructed by introducing the exponential peak generation (EPG) model. Finally, a random pro- cess can be generated via IFFT that meets the specified power spectral density (PSD), skewness and kurtosis. In contrast to a wind tunnel experiment, this method can avoid the coupled relation between the non-Gaussian and the power spectrum char- acteristics, and lead to the desired computational efficiency. Its fitting accuracy is not affected by phase spectrum. Moreover, the fitting precision of the kurtosis and PSD parameters can be guaranteed. In a few cases, the fitting precision of the skewness parameter is fairly poor, but kurtosis is more important than skewness in the description of the non-Gaussian characteristics. Above all, this algorithm is simple and stable and would be an effective method to simulate a non-Gaussian signal.
基金supported by the National Natural Science Foundation of China(51602049 and 51708504)China Postdoctoral Science Foundation(2017M610217 and 2018T110322)。
文摘It is still challenging to develop suitable cathode structures for high-rate and stable aqueous Zn-ion batteries.Herein,a phosphating-assisted interfacial engineering strategy is designed for the controllable conversion of NiCo_(2)S_(4) nanosheets into heterostructured NiCoP/NiCo_(2)S_(4) as the cathodes in aqueous Zn-ion batteries.The multicomponent heterostructures with rich interfaces can not only improve the electrical conductivity but also enhance the diffusion pathways for Zn-ion storage.As expected,the NiCoP/NiCo_(2)S_(4) electrode has high performance with a large specific capacity of 251.1 mA h g^(−1) at a high current density of 10 A g^(−1) and excellent rate capability(retaining about 76%even at 50 A g^(−1)).Accordingly,the Zn-ion battery using NiCoP/NiCo_(2)S_(4) as the cathode delivers a high specific capacity(265.1 mA h g^(−1) at 5 A g^(−1)),a long-term cycling stability(96.9%retention after 5000 cycles),and a competitive energy density(444.7W h kg^(−1) at the power density of 8.4 kW kg^(−1)).This work therefore provides a simple phosphating-assisted interfacial engineering strategy to construct heterostructured electrode materials with rich interfaces for the development of high-performance energy storage devices in the future.