The random K-satisfiability (K-SAT) problem is very diffcult when the clause density is close to the satisfiability threshold. In this paper we study this problem from the perspective of solution space coupling. We ...The random K-satisfiability (K-SAT) problem is very diffcult when the clause density is close to the satisfiability threshold. In this paper we study this problem from the perspective of solution space coupling. We divide a given difficult random K-SAT formula into two easy sub-formulas and let the two corresponding solution spaces to interact with each other through a coupling field x. We investigate the statistical mechanical property of this coupled system by mean field theory and computer simulations. The coupled system has an ergodicity-breaking (clustering) transition at certain critical value Xd of the coupling field. At this transition point, the mean overlap value between the solutions of the two solution spaces is very close to 1. The mean energy density of the coupled system at its clustering transition point is less than the mean energy density of the original K-SAT problem at the temperature-induced clustering transition point. The implications of this work for designing new heuristic K-SAT solvers are discussed.展开更多
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences under Grant No.KJCX2-EW-J02the Natural National Science Foundation of China under Grant Nos.11121403 and 11225526
文摘The random K-satisfiability (K-SAT) problem is very diffcult when the clause density is close to the satisfiability threshold. In this paper we study this problem from the perspective of solution space coupling. We divide a given difficult random K-SAT formula into two easy sub-formulas and let the two corresponding solution spaces to interact with each other through a coupling field x. We investigate the statistical mechanical property of this coupled system by mean field theory and computer simulations. The coupled system has an ergodicity-breaking (clustering) transition at certain critical value Xd of the coupling field. At this transition point, the mean overlap value between the solutions of the two solution spaces is very close to 1. The mean energy density of the coupled system at its clustering transition point is less than the mean energy density of the original K-SAT problem at the temperature-induced clustering transition point. The implications of this work for designing new heuristic K-SAT solvers are discussed.