Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock ph...Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs.展开更多
In order to improve the low ductility of the Mo-Ni alloy,Fe is added and the effects of Ni/Fe mass ratio on the densification behavior,microstructure evolution and mechanical properties of alloy were investigated.The ...In order to improve the low ductility of the Mo-Ni alloy,Fe is added and the effects of Ni/Fe mass ratio on the densification behavior,microstructure evolution and mechanical properties of alloy were investigated.The experimental results show that when iron is added to 95Mo-5Ni alloy,the formation of brittle intermetallic phaseδ-MoNi at the grain boundary is avoided.Meanwhile,the grain growth of Mo is also effectively inhibited in the sintering process.However,the addition of iron reduces the degree of densification of alloy since the activation effect of Ni is superior to that of Fe.From the experimental results,it could be concluded that the maximum hardness and bending strength are achieved by 95Mo-1.5Ni-3.5Fe alloy,which are HV 614 and 741 MPa,respectively.Combined with the analyses of bending fracture mechanism,the improvement relative to Mo-Ni alloy is likely attributed to the inhibition of the brittle phase.展开更多
基金supported by the National 973 project(Nos.2014CB239006 and 2011CB202402)the National Natural Science Foundation of China(Nos.41104069 and 41274124)+1 种基金Sinopec project(No.KJWX2014-05)the Fundamental Research Funds for the Central Universities(No.R1401005A)
文摘Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs.
基金Project(51734002)supported by the National Natural Science Foundation of China。
文摘In order to improve the low ductility of the Mo-Ni alloy,Fe is added and the effects of Ni/Fe mass ratio on the densification behavior,microstructure evolution and mechanical properties of alloy were investigated.The experimental results show that when iron is added to 95Mo-5Ni alloy,the formation of brittle intermetallic phaseδ-MoNi at the grain boundary is avoided.Meanwhile,the grain growth of Mo is also effectively inhibited in the sintering process.However,the addition of iron reduces the degree of densification of alloy since the activation effect of Ni is superior to that of Fe.From the experimental results,it could be concluded that the maximum hardness and bending strength are achieved by 95Mo-1.5Ni-3.5Fe alloy,which are HV 614 and 741 MPa,respectively.Combined with the analyses of bending fracture mechanism,the improvement relative to Mo-Ni alloy is likely attributed to the inhibition of the brittle phase.