期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于密集深度分离卷积的SAR图像水域分割算法 被引量:13
1
作者 张金松 邢孟道 孙光才 《雷达学报(中英文)》 CSCD 北大核心 2019年第3期400-412,共13页
SAR图像的水域分割在舰船目标检测、灾害监测等军事和民用领域具有重要意义。针对传统水域分割算法鲁棒性差、难以准确进行分割等问题,该文首先建立了基于高分三号的SAR图像水域分割数据集,并基于深度学习技术提出了基于密集深度分离卷... SAR图像的水域分割在舰船目标检测、灾害监测等军事和民用领域具有重要意义。针对传统水域分割算法鲁棒性差、难以准确进行分割等问题,该文首先建立了基于高分三号的SAR图像水域分割数据集,并基于深度学习技术提出了基于密集深度分离卷积的分割网络架构,该网络以SAR图像作为输入,通过密集分离卷积和扩张卷积提取图像高维特征,并构造基于双线性插值的上采样解码模块用于输出分割结果。在水域分割数据集上的实验结果表明,与传统方法相比,该方法不仅在分割准确度上有大幅提高,在算法的鲁棒性和分割速度上也具有部分优势,具备较好的工程实用价值。 展开更多
关键词 合成孔径雷达 水域分割 深度学习 密集分离卷积 特征提取
下载PDF
基于改进Xception网络的手势识别 被引量:1
2
作者 周梓豪 田秋红 《软件导刊》 2022年第6期41-48,共8页
针对单一卷积神经网络对多种复杂背景下手势图像识别准确率较低等问题,提出一种基于改进Xception网络的手势图像识别方法。该方法使用密集连接代替残差连接,在保留跳跃连接效果的同时减少深度可分离卷积模块和网络通道数量,不仅有效利... 针对单一卷积神经网络对多种复杂背景下手势图像识别准确率较低等问题,提出一种基于改进Xception网络的手势图像识别方法。该方法使用密集连接代替残差连接,在保留跳跃连接效果的同时减少深度可分离卷积模块和网络通道数量,不仅有效利用了网络参数,而且降低了模型大小;其还融合SE模块强化重要特征,采用特征金字塔结构获得包含多尺度语义的特征张量,有助于网络分类。验证实验结果表明,改进网络的计算参数量为原始Xception网络的1/5,对NUS-Ⅱ手势数据集的识别准确率达到99.64%,比原始Xception网络提高了1.09%;对Sign Language for Numbers手势数据集的识别准确率达到99.7%,比原始Xception网络提高了0.15%。与ResNet50、DenseNet121和InceptionV3等常用手势识别网络进行比较,改进网络在训练时间、模型大小、计算参数量和识别准确率方面均表现更优。基于改进Xception网络的手势识别方法在多种复杂背景因素干扰下仍具有较高的识别准确率,其泛化性强、参数量少,综合性能优于许多常用网络。 展开更多
关键词 Xception网络 密集深度可分离卷积模块 SE模块 特征金字塔结构 手势识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部