期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合BiFPN和YOLOv5s的密集型原木端面检测方法
被引量:
4
1
作者
余平平
林耀海
+2 位作者
赖云锋
程树英
林培杰
《林业工程学报》
CSCD
北大核心
2023年第1期126-134,共9页
针对成捆原木端面检测存在由于目标密集而形成的大量小目标难以精确识别的问题,提出融合BiFPN(bidirectional weighted feature pyramid network,双向加权特征金字塔网络)和YOLOv5s的密集型原木端面检测方法。为了提高密集原木图像中小...
针对成捆原木端面检测存在由于目标密集而形成的大量小目标难以精确识别的问题,提出融合BiFPN(bidirectional weighted feature pyramid network,双向加权特征金字塔网络)和YOLOv5s的密集型原木端面检测方法。为了提高密集原木图像中小目标的平均精度和查全率,模型中添加了一个小目标检测层以保留更多的浅层语义信息;为避免添加了小目标检测层后特征融合过程中的信息丢失,进而导致特征相对复杂的目标误检率、漏检率升高,融合简化版的BiFPN,在特征融合结构中加入跨尺度连接线以保留更多深层的语义信息,二者结合进一步提高了模型的鲁棒性。为了深入验证该模型的有效性,采取COCO公共数据集评判指标,将原木目标分为大、中、小3种目标并分别进行测试分析。试验结果表明:改进的模型对大目标的查全率和平均精度分别为99.70%和98.79%,调和均值为0.991;中目标的查全率和平均精度分别为98.02%和97.90%,调和均值为0.975,大目标和中目标相比于原模型性能几乎不变;小目标的查全率和平均精度为97.25%和96.86%,相比于原模型分别提高了20.96%和21.13%,调和均值0.973,相比于原模型提高了0.114。改进的模型检测速度为平均每张图片11.89 ms,模型参数量为14.4 MB,仅比原模型高了0.7 MB。因此,改进后的模型具有检测精度高、鲁棒性强、轻量化等特点,为实际环境复杂多变、数量庞大的密集原木端面检测提供了一种可行的方法。
展开更多
关键词
目标
检测
密集原木端面检测
YOLOv5s
BiFPN
小目标
检测
层
下载PDF
职称材料
题名
融合BiFPN和YOLOv5s的密集型原木端面检测方法
被引量:
4
1
作者
余平平
林耀海
赖云锋
程树英
林培杰
机构
福州大学物理与信息工程学院
福建农林大学计算机与信息学院
出处
《林业工程学报》
CSCD
北大核心
2023年第1期126-134,共9页
基金
福建省自然科学基金(2018J01774,2018J01645)。
文摘
针对成捆原木端面检测存在由于目标密集而形成的大量小目标难以精确识别的问题,提出融合BiFPN(bidirectional weighted feature pyramid network,双向加权特征金字塔网络)和YOLOv5s的密集型原木端面检测方法。为了提高密集原木图像中小目标的平均精度和查全率,模型中添加了一个小目标检测层以保留更多的浅层语义信息;为避免添加了小目标检测层后特征融合过程中的信息丢失,进而导致特征相对复杂的目标误检率、漏检率升高,融合简化版的BiFPN,在特征融合结构中加入跨尺度连接线以保留更多深层的语义信息,二者结合进一步提高了模型的鲁棒性。为了深入验证该模型的有效性,采取COCO公共数据集评判指标,将原木目标分为大、中、小3种目标并分别进行测试分析。试验结果表明:改进的模型对大目标的查全率和平均精度分别为99.70%和98.79%,调和均值为0.991;中目标的查全率和平均精度分别为98.02%和97.90%,调和均值为0.975,大目标和中目标相比于原模型性能几乎不变;小目标的查全率和平均精度为97.25%和96.86%,相比于原模型分别提高了20.96%和21.13%,调和均值0.973,相比于原模型提高了0.114。改进的模型检测速度为平均每张图片11.89 ms,模型参数量为14.4 MB,仅比原模型高了0.7 MB。因此,改进后的模型具有检测精度高、鲁棒性强、轻量化等特点,为实际环境复杂多变、数量庞大的密集原木端面检测提供了一种可行的方法。
关键词
目标
检测
密集原木端面检测
YOLOv5s
BiFPN
小目标
检测
层
Keywords
object detection
dense log end face detection
YOLOv5s
BiFPN
small object detection layer
分类号
TP273 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合BiFPN和YOLOv5s的密集型原木端面检测方法
余平平
林耀海
赖云锋
程树英
林培杰
《林业工程学报》
CSCD
北大核心
2023
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部