In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea...In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.展开更多
The algorithm of dense spectrum correction has been raised and proved based on the correction of discrete spectrum by fast Fourier transform.The result of simulation shows that such algorithm has advantages of high ac...The algorithm of dense spectrum correction has been raised and proved based on the correction of discrete spectrum by fast Fourier transform.The result of simulation shows that such algorithm has advantages of high accuracy and small amount of calculation.The algorithm has been successfully applied to the analysis of vibration signals from internal combustion engine.To calculate discrete spectrum,fast Fourier transform has been used to calculate the discrete spectrum by the signals acquired by the sensors on the oil pan,and the signal has been extracted from the mixed signals.展开更多
文摘In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.
基金Project(51176045) supported by the National Natural Science Foundation of China
文摘The algorithm of dense spectrum correction has been raised and proved based on the correction of discrete spectrum by fast Fourier transform.The result of simulation shows that such algorithm has advantages of high accuracy and small amount of calculation.The algorithm has been successfully applied to the analysis of vibration signals from internal combustion engine.To calculate discrete spectrum,fast Fourier transform has been used to calculate the discrete spectrum by the signals acquired by the sensors on the oil pan,and the signal has been extracted from the mixed signals.