针对目标检测算法对小目标行人识别率低、对监控远处视野目标检测精度不理想的问题,提出了改进YOLOv5高效多尺度特征利用的行人检测算法。首先,通过在原网络中改进高效的特征融合结构,提高模型对深层特征的感知力来提高模型精度;其次,采...针对目标检测算法对小目标行人识别率低、对监控远处视野目标检测精度不理想的问题,提出了改进YOLOv5高效多尺度特征利用的行人检测算法。首先,通过在原网络中改进高效的特征融合结构,提高模型对深层特征的感知力来提高模型精度;其次,采用Res2Net Block重构骨干网络,加强对细粒度特征信息的利用;最后,加入改进的空间金字塔注意力池化网络,强化模型的多层次特征表达能力。在CrowdHuman数据集进行训练和验证,YOLOv5-SA的平均检测精度达到了85.6%,相比原算法提高了3.8%,检测速度可以达到51 FPS(frames per second),识别精度和检测速度均具有较好的效果,可以有效应用于密集目标行人检测任务。展开更多
人群数量估计是人群管理系统的关键,对于预防踩踏事故和引导人群至关重要,已成为一个日益重要的任务和具有挑战性的研究方向。本文提出一种数据相关的拆分注意力机制的编码器-解码器结构的人群计数方法,称为DNe StCount。为应对视频监...人群数量估计是人群管理系统的关键,对于预防踩踏事故和引导人群至关重要,已成为一个日益重要的任务和具有挑战性的研究方向。本文提出一种数据相关的拆分注意力机制的编码器-解码器结构的人群计数方法,称为DNe StCount。为应对视频监控的尺度变化和透视失真的挑战,将更密集的空洞采样比率应用到密集空洞空间金字塔池化模块DASPP设计中。为提升密度图估计的准确性,将可学习的、数据相关的上采样方法 DUpsampling应用到特征聚合模块DFA设计中。为弥补欧几里德损失可能存在对离群值敏感、训练不稳定等缺点,采用Smooth L1损失设计损失函数。在具有挑战性的数据集上进行的实验和分析表明,本文提出的人群计数方法 DNe St Count与其他主流方法相比更具有竞争力。展开更多
文摘针对目标检测算法对小目标行人识别率低、对监控远处视野目标检测精度不理想的问题,提出了改进YOLOv5高效多尺度特征利用的行人检测算法。首先,通过在原网络中改进高效的特征融合结构,提高模型对深层特征的感知力来提高模型精度;其次,采用Res2Net Block重构骨干网络,加强对细粒度特征信息的利用;最后,加入改进的空间金字塔注意力池化网络,强化模型的多层次特征表达能力。在CrowdHuman数据集进行训练和验证,YOLOv5-SA的平均检测精度达到了85.6%,相比原算法提高了3.8%,检测速度可以达到51 FPS(frames per second),识别精度和检测速度均具有较好的效果,可以有效应用于密集目标行人检测任务。
文摘人群数量估计是人群管理系统的关键,对于预防踩踏事故和引导人群至关重要,已成为一个日益重要的任务和具有挑战性的研究方向。本文提出一种数据相关的拆分注意力机制的编码器-解码器结构的人群计数方法,称为DNe StCount。为应对视频监控的尺度变化和透视失真的挑战,将更密集的空洞采样比率应用到密集空洞空间金字塔池化模块DASPP设计中。为提升密度图估计的准确性,将可学习的、数据相关的上采样方法 DUpsampling应用到特征聚合模块DFA设计中。为弥补欧几里德损失可能存在对离群值敏感、训练不稳定等缺点,采用Smooth L1损失设计损失函数。在具有挑战性的数据集上进行的实验和分析表明,本文提出的人群计数方法 DNe St Count与其他主流方法相比更具有竞争力。