期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
采用DenseNet模型的AD自动分类方法
1
作者 陈玉思 陈培坤 叶宇光 《宁德师范学院学报(自然科学版)》 2024年第1期65-72,共8页
为研究深度学习算法对阿尔茨海默病分类的准确性,提出密集卷积神经网络方法,对阿尔茨海默病进行分类.利用预处理后的数据训练密集卷积神经网络结构,并分类阿尔茨海默病和认知正常者.测试结果表明,文中方法获得的分类准确率为98.91%,分... 为研究深度学习算法对阿尔茨海默病分类的准确性,提出密集卷积神经网络方法,对阿尔茨海默病进行分类.利用预处理后的数据训练密集卷积神经网络结构,并分类阿尔茨海默病和认知正常者.测试结果表明,文中方法获得的分类准确率为98.91%,分类阿尔茨海默病和轻度认知障碍的准确率为94.54%,准确率较其他算法有一定提升,为阿尔茨海默病的精准分类提供了一种有效的解决方案. 展开更多
关键词 阿尔茨海默病 脑部磁共振成像图像 深度学习 密集的网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部