期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于密集编码标签的遥感图像旋转目标检测算法
1
作者 王彦雅 李卫东 张伟娜 《河北省科学院学报》 CAS 2023年第1期1-6,35,共7页
针对现有目标检测算法在遥感图像中检测精度低,容易漏检等问题,提出了一种遥感图像旋转目标检测算法,使用YOLOv5m作为基本框架。首先,使用环形平滑标签CSL(Circular SmoothLabel,CSL)将角度回归预测转变为角度分类预测,解决回归预测中... 针对现有目标检测算法在遥感图像中检测精度低,容易漏检等问题,提出了一种遥感图像旋转目标检测算法,使用YOLOv5m作为基本框架。首先,使用环形平滑标签CSL(Circular SmoothLabel,CSL)将角度回归预测转变为角度分类预测,解决回归预测中的角度周期性和边界可交换性的问题,提升检测精度。其次,使用密集编码标签(DenselyCodedLabel,DCL)替换稀疏编码标签,大幅减少预测层厚度,提升训练速度。实验表明,使用改进后的算法较基准算法mAP提升4.88%,模型训练速度与原模型速度基本相同,证明了算法的有效性。 展开更多
关键词 旋转目标检测 遥感图像 环形平滑标签 密集编码标签
下载PDF
基于旋转目标检测的指针式仪表示数识别方法 被引量:7
2
作者 孙顺远 陈浩 《仪表技术与传感器》 CSCD 北大核心 2023年第3期18-23,32,共7页
针对目前指针式仪表示数识别方法实用性差、累计误差大的问题,提出了一种基于旋转目标检测网络的指针式仪表示数识别方法。首先,改进网络模型YOLOv5s,生成旋转目标检测网络,同时,引入密集编码标签,解决旋转目标检测中存在的边界问题,并... 针对目前指针式仪表示数识别方法实用性差、累计误差大的问题,提出了一种基于旋转目标检测网络的指针式仪表示数识别方法。首先,改进网络模型YOLOv5s,生成旋转目标检测网络,同时,引入密集编码标签,解决旋转目标检测中存在的边界问题,并向模型中引入注意力模块,提升模型获取目标特征的能力;其次,利用网络输出的位置与角度信息对表盘进行倾斜校正和刻度点筛选,省去了对表盘指针进行直线检测的时间;最后,利用角度法完成仪表示数读取。实验证明,该方法读数误差较小,具有一定的抗干扰能力,进一步提高了示数读取的速度和精度。 展开更多
关键词 指针式仪表 旋转目标检测 密集编码标签 注意力机制 倾斜校正 示数读取
下载PDF
改进YOLOv7的无边界不连续旋转检测算法
3
作者 郭振江 何小海 +1 位作者 吴晓红 陈洪刚 《新一代信息技术》 2023年第20期1-12,共12页
针对遥感图像中目标方向、尺度和长宽比变化剧烈以及时而密集时而稀疏排列等造成的特征提取困难和基于回归的旋转检测器中存在的边界不连续问题,我们提出了以下解决方案:首先,使用YOLOv7检测器进行特征提炼与融合;其次,结合密集编码标签... 针对遥感图像中目标方向、尺度和长宽比变化剧烈以及时而密集时而稀疏排列等造成的特征提取困难和基于回归的旋转检测器中存在的边界不连续问题,我们提出了以下解决方案:首先,使用YOLOv7检测器进行特征提炼与融合;其次,结合密集编码标签(Densely Coded Label,DCL),构建角度分类编码-解码器,实现旋转检测;然后,改进SimOTA自适应样本匹配策略为R-SimOTA,通过在代价函数中增加角度分类损失指导,提高样本分配准确性;最后,在损失函数中增加角度分类损失(DCL Loss)和权值(theta),并引入角度距离和长宽比敏感加权(Angle Distance and Aspect Ratio Sensitive Weighting,ADARSW),指导模型收敛并拟合出正确的角度预测值。在大型遥感图像数据集DOTA上进行了大量实验和视觉分析,结果表明该方案有效。 展开更多
关键词 目标检测 遥感图像 旋转检测 密集编码标签 角度分类 R-SimOTA自适应样本匹配
下载PDF
融合注意力机制的遥感图像旋转目标检测算法 被引量:3
4
作者 张宇 马杰 +2 位作者 崔静雯 赵月华 刘宏 《激光与光电子学进展》 CSCD 北大核心 2022年第24期184-192,共9页
针对光学遥感图像目标检测中存在的精度低及忽略目标方向性的问题,提出了一种基于改进YOLOv5m的遥感图像旋转目标检测算法。首先,融合注意力机制模块提升模型对重要特征的提取能力;其次,在特征融合模块部分考虑各节点特征融合的贡献度,... 针对光学遥感图像目标检测中存在的精度低及忽略目标方向性的问题,提出了一种基于改进YOLOv5m的遥感图像旋转目标检测算法。首先,融合注意力机制模块提升模型对重要特征的提取能力;其次,在特征融合模块部分考虑各节点特征融合的贡献度,并增加同一特征尺度的跳跃连接;最后,针对旋转检测中存在的角度边界问题,使用密集编码标签对角度进行离散化处理。实验结果表明,所提算法在DOTA数据集子集上的检测精度达到了82.75%,在小幅降低模型计算量的情况下,较原有YOLOv5m提升了11.73个百分点,同时在HRSC2016舰船数据集上也取得了88.89%的检测精度。即该算法能有效提升光学遥感图像旋转检测的精度。 展开更多
关键词 机器视觉 遥感图像 注意力机制 旋转目标检测 密集编码标签 YOLO
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部