为避免传统SAR图像特征分类算法中所需的目标方位角精确估计,提出了一种新的基于稀疏表示与空域金字塔环形描述相结合的SAR目标分类方法.该方法引入bag of features思想,利用密集采样SIFT描述特征训练过完备字典,对训练集和测试集同时...为避免传统SAR图像特征分类算法中所需的目标方位角精确估计,提出了一种新的基于稀疏表示与空域金字塔环形描述相结合的SAR目标分类方法.该方法引入bag of features思想,利用密集采样SIFT描述特征训练过完备字典,对训练集和测试集同时进行稀疏编码并构造空域金字塔环形描述,得到旋转不变特征,最后输入线性SVM分类器进行分类.MSTAR实测数据的对比实验表明,在无需目标方位角估计的前提下,所提出的算法识别率达到96%以上,取得了很好的目标分类效果.展开更多
基金Supported by National Key Basic Research(973)Program of China(2010CB731900)
文摘为避免传统SAR图像特征分类算法中所需的目标方位角精确估计,提出了一种新的基于稀疏表示与空域金字塔环形描述相结合的SAR目标分类方法.该方法引入bag of features思想,利用密集采样SIFT描述特征训练过完备字典,对训练集和测试集同时进行稀疏编码并构造空域金字塔环形描述,得到旋转不变特征,最后输入线性SVM分类器进行分类.MSTAR实测数据的对比实验表明,在无需目标方位角估计的前提下,所提出的算法识别率达到96%以上,取得了很好的目标分类效果.