We demonstrate that the near-infrared (NIR) absorptivity of semiconducfing single-walled carbon nanotubes (s-SWCNTs) can be harnessed in blended heterojunctions with the fullerene derivative [6,6]-phenyl-C61-butyr...We demonstrate that the near-infrared (NIR) absorptivity of semiconducfing single-walled carbon nanotubes (s-SWCNTs) can be harnessed in blended heterojunctions with the fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Photogenerated charge separation is efficiently driven by the ultrahigh interracial area of the blends and the favorable energy offsets between the two materials. NIR-sensitive photovoltaic and photodetector devices utilizing the stack (indium tin oxide/ca. 10 nm s-SWCNT:PCBM/100 nm CJ10 nm 2,9- dimethyl-4,7-diphenyl-],10-phenanthroline (BCP)/Ag) were fabricated with NIR power conversion efficiencies 〉1.3% and peak, zero bias external quantum efficiency of 18% at λ = 1205 nm.展开更多
基金Acknowledgements The authors acknowledge the assistance of Frederick C. Prehn in sample preparation. This work was supported by the National Science Foundation (Grant No. DMR- 0905861).
文摘We demonstrate that the near-infrared (NIR) absorptivity of semiconducfing single-walled carbon nanotubes (s-SWCNTs) can be harnessed in blended heterojunctions with the fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Photogenerated charge separation is efficiently driven by the ultrahigh interracial area of the blends and the favorable energy offsets between the two materials. NIR-sensitive photovoltaic and photodetector devices utilizing the stack (indium tin oxide/ca. 10 nm s-SWCNT:PCBM/100 nm CJ10 nm 2,9- dimethyl-4,7-diphenyl-],10-phenanthroline (BCP)/Ag) were fabricated with NIR power conversion efficiencies 〉1.3% and peak, zero bias external quantum efficiency of 18% at λ = 1205 nm.