Cyanobacterial blooms occur frequently in lakes due to eutrophication. Although a number of models have been proposed to forecast algal blooms, a good and applicable method is still lacking. This study explored a simp...Cyanobacterial blooms occur frequently in lakes due to eutrophication. Although a number of models have been proposed to forecast algal blooms, a good and applicable method is still lacking. This study explored a simple and effective mathematical-ecological model to evaluate the growth status and predict the population dynamics of Microcystis blooms. In this study, phytoplankton were collected and identified from 8 sampling sites in Chaohu Lake every month from July to October, 2010. The niche breadth and niche overlap of common species were calculated using standard equations, and the potential relative growth rates of Microcystis were calculated as a weighted-value of niche overlap. In July, the potential relative growth rate was 2.79 (a.u., arbitrary units) but then rapidly declined in the following months to -3.99 a.u. in September. A significant correlation (R=0.998, P<0.01) was found in the model between the net-increase in biomass of Microcystis in the field and the predicted values calculated by the niche model, we concluded that the niche model is suitable for forecasting the dynamics of Microcystis blooms. Redundancy analysis indicated that decreases in water temperature, dissolved oxygen and total dissolved phosphorus might be major factors underlying bloom decline. Based on the theory of community succession being caused by resource competition, the growth and decline of blooms can be predicted from a community structure. This may provide a basis for early warning and control of algal blooms.展开更多
The potential impact of climate change on international and domestic concern. This study aims water eutrophication and ecosystems is of great to analyze the impact of climate change on algal bloom problems in large ri...The potential impact of climate change on international and domestic concern. This study aims water eutrophication and ecosystems is of great to analyze the impact of climate change on algal bloom problems in large river systems by utilizing a parametric river eutrophication model that is established using indicators of climate change, hydrological regimes, water quality and nutrient loads. Specifically, the developed parametric modeling method is based on statistical and simulation methods including: Multiple Linear Regressions (MLR), Multiple Non-linear Regressions (MNR), Artificial Neural Network (ANN) based on Back-propagation (BP) algorithms, as well as an integrated river eutrophication model. The developed model was applied to Han River, which is one of the major sources of fresh water in Wuhan City, China. The impacts of climate change and human activities on the occurrence mechanisms of algal blooms in the Hart River were identified by scenarios analysis. The individual assessment result indicates that the waste nutrient P load has the most significant impact (14.82%), followed by the flow rate (5.56%) and then by temperature (3.7%). For the integrated climate change assessment, it has been found that there is a significant impact (20.37%) when waste load increases and flow rate decreases at the same time. This is followed by increases but flow rate decreases, increase of both waste load and the impact is predicted to be 11 temperature (15.82%). If temperature 11%. The final results point to human activities as a significant influence on water quality and the Han River ecosystem, temperature is also one of the main factors which directly contribute to algal blooms in Han River. The results in present study are expected to give theoretical supports for further relevant research on water eutrophication.展开更多
A three-dimensional eutrophication model was applied to assist the management of Dahuofang Reservoir in China.Transport processes were obtained from the three-dimensional,finite volume hydrodynamic model.The hydrodyna...A three-dimensional eutrophication model was applied to assist the management of Dahuofang Reservoir in China.Transport processes were obtained from the three-dimensional,finite volume hydrodynamic model.The hydrodynamic model was verified for a one-year time period in 2006.Our simulation reproduced intra-annual variation of stratification.The simulated variation of vertical thermal structures also matched observations.The water quality model included 8 state variables,including dissolved oxygen,phytoplankton as carbon,carbonaceous biochemical oxygen demand,ammonium nitrogen,nitrate and nitrite nitrogen,ortho-phosphorus,organic nitrogen,and organic phosphorus.Sensitivity of the parameters has been analyzed to decide which process would affect the water quality in the simulation.The water quality verification suggested the model successfully computed the temporal cycles and spatial distributions of key water quality components.The comparison between water quality components before and after the first phase of the water conveyance project suggests that the project has a slight effect on the reservoir ecosystem.The model could be used as a tool to guide physico-biological engineering design or management strategies for Dahuofang Reservoir.展开更多
基金Supported by the National Basic Research Program of China (973 Program)(No. 2008CB418002)the National Major Programs of Water Body Pollution Control and Remediation (Nos. 2009ZX07106-001, 2009ZX07104-005)the National Natural Science Foundation of China (No. 30830025)
文摘Cyanobacterial blooms occur frequently in lakes due to eutrophication. Although a number of models have been proposed to forecast algal blooms, a good and applicable method is still lacking. This study explored a simple and effective mathematical-ecological model to evaluate the growth status and predict the population dynamics of Microcystis blooms. In this study, phytoplankton were collected and identified from 8 sampling sites in Chaohu Lake every month from July to October, 2010. The niche breadth and niche overlap of common species were calculated using standard equations, and the potential relative growth rates of Microcystis were calculated as a weighted-value of niche overlap. In July, the potential relative growth rate was 2.79 (a.u., arbitrary units) but then rapidly declined in the following months to -3.99 a.u. in September. A significant correlation (R=0.998, P<0.01) was found in the model between the net-increase in biomass of Microcystis in the field and the predicted values calculated by the niche model, we concluded that the niche model is suitable for forecasting the dynamics of Microcystis blooms. Redundancy analysis indicated that decreases in water temperature, dissolved oxygen and total dissolved phosphorus might be major factors underlying bloom decline. Based on the theory of community succession being caused by resource competition, the growth and decline of blooms can be predicted from a community structure. This may provide a basis for early warning and control of algal blooms.
基金supported by the Commonweal Project (200801001) of Ministry of Water Resources, People’s Republic of China
文摘The potential impact of climate change on international and domestic concern. This study aims water eutrophication and ecosystems is of great to analyze the impact of climate change on algal bloom problems in large river systems by utilizing a parametric river eutrophication model that is established using indicators of climate change, hydrological regimes, water quality and nutrient loads. Specifically, the developed parametric modeling method is based on statistical and simulation methods including: Multiple Linear Regressions (MLR), Multiple Non-linear Regressions (MNR), Artificial Neural Network (ANN) based on Back-propagation (BP) algorithms, as well as an integrated river eutrophication model. The developed model was applied to Han River, which is one of the major sources of fresh water in Wuhan City, China. The impacts of climate change and human activities on the occurrence mechanisms of algal blooms in the Hart River were identified by scenarios analysis. The individual assessment result indicates that the waste nutrient P load has the most significant impact (14.82%), followed by the flow rate (5.56%) and then by temperature (3.7%). For the integrated climate change assessment, it has been found that there is a significant impact (20.37%) when waste load increases and flow rate decreases at the same time. This is followed by increases but flow rate decreases, increase of both waste load and the impact is predicted to be 11 temperature (15.82%). If temperature 11%. The final results point to human activities as a significant influence on water quality and the Han River ecosystem, temperature is also one of the main factors which directly contribute to algal blooms in Han River. The results in present study are expected to give theoretical supports for further relevant research on water eutrophication.
基金supported by the National Science and Technology Major Special Project of China on Water Pollution Control and Management (Grant No. 2009ZX07528-006-01)the National Natural Science Foundation of China (Grant No. 50839001)
文摘A three-dimensional eutrophication model was applied to assist the management of Dahuofang Reservoir in China.Transport processes were obtained from the three-dimensional,finite volume hydrodynamic model.The hydrodynamic model was verified for a one-year time period in 2006.Our simulation reproduced intra-annual variation of stratification.The simulated variation of vertical thermal structures also matched observations.The water quality model included 8 state variables,including dissolved oxygen,phytoplankton as carbon,carbonaceous biochemical oxygen demand,ammonium nitrogen,nitrate and nitrite nitrogen,ortho-phosphorus,organic nitrogen,and organic phosphorus.Sensitivity of the parameters has been analyzed to decide which process would affect the water quality in the simulation.The water quality verification suggested the model successfully computed the temporal cycles and spatial distributions of key water quality components.The comparison between water quality components before and after the first phase of the water conveyance project suggests that the project has a slight effect on the reservoir ecosystem.The model could be used as a tool to guide physico-biological engineering design or management strategies for Dahuofang Reservoir.