Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV...Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.展开更多
The 430 ℃ isothermal section of the Al 4Mg Sc Zr quaternary system in the Al rich range was determined by means of equilibrium alloys with the use of microstructure, X ray diffraction analysis and electron probe micr...The 430 ℃ isothermal section of the Al 4Mg Sc Zr quaternary system in the Al rich range was determined by means of equilibrium alloys with the use of microstructure, X ray diffraction analysis and electron probe microanalysis. There coexist three single phase fields, two two phase fields and one three phase field. It is established that the phase Al 3Sc 10.5 Zr 00.5 with L1 2 structure and Al 3Zr 10.8 Sc 00.2 with DO 23 structure are in equilibrium with the α solid solution, Zr being dissolved in Al 3Sc, further substituting for about 50% Sc(mole fraction) whilst Sc is present in the phase Al 3Zr and the maximum substitution for Zr is about 20%.展开更多
Phase relation of the aluminium magnesium scandium system in the Al rich range at 430 ℃ was investigated by means of multiphase diffusion couples along with electron probe microanalysis, X ray diffraction and electro...Phase relation of the aluminium magnesium scandium system in the Al rich range at 430 ℃ was investigated by means of multiphase diffusion couples along with electron probe microanalysis, X ray diffraction and electron microscopy techniques. It consists of five single phase fields, four 2 phase fields and one 3 phase field. The maximum solid solubilities of Mg and Sc in α (Al) solid solution at 430 ℃ are about 15.27%Mg(mole fraction) and 0.33%Sc, respectively. The maximum solid solubilities of Sc in Mg 2Al 3 and Mg 17 Al 12 are about 1.08% and 0.03% at the same temperature. The diffusion path at 430 ℃ was constructed and interpreted by means of the Al Mg Sc equilibrium phase diagram assuming that local equilibrium is established at the phase boundaries.展开更多
The Fe-containing intermetallic compounds with high melting point in hypereutectic Al-Si alloys can improve the heat resistance and wear resistance at elevated temperatures. However, the long needle-like Fe-containing...The Fe-containing intermetallic compounds with high melting point in hypereutectic Al-Si alloys can improve the heat resistance and wear resistance at elevated temperatures. However, the long needle-like Fe-containing compounds in the alloys produced by conventional casting process are detrimental to the strength of matrix. The effect of ultrasonic vibration (USV) on the morphology change of Fe-containing intermetallic compounds in the hypereutectic Al-17Si-xFe (x=2, 3, 4, 5) alloys was systematically studied. The results show that, the Fe-containing intermetallic compounds are mainly composed of long needle-like β-Al5FeSi phase with a small amount of plate-like δ-Al4FeSi2 phase in Al-17Si-2Fe alloy produced by conventional casting process. With the increase of Fe content from 2% to 5% in the alloys, the amount of plate-like or coarse needle-like δ-Al4FeSi2 phase increases while the amount of long needle-like β-Al5FeSi phases decreases. In Al-17Si-5Fe alloy, the Fe-containing intermetallic compounds exist mainly as coarse needle-like δ-Al4FeSi2 phase. After USV treatment, the Fe-containing compounds in the Al-17Si-xFe alloys are refined and exist mainly as δ-Al4FeSi2 particles, with average grain size ranging from 26 μm to 37 μm, and only a small amount of β-Al5FeSi phases remain. The mechanism of USV on the morphology of Fe-containing intermetallic compounds was also discussed.展开更多
The microstructural evolution characteristics of thermo-mechanically affected zone were investigated during friction stir processing (FSP) of the thixoformed AZ91D alloy. Simultaneously, an Al-rich surface layer was p...The microstructural evolution characteristics of thermo-mechanically affected zone were investigated during friction stir processing (FSP) of the thixoformed AZ91D alloy. Simultaneously, an Al-rich surface layer was prepared by combination of Al powder using FSP method. The results indicate that the dynamic recrystallization and mechanical separation (including splitting and fracture of the primary grains) are the main mechanisms of grain refinement. For the thixoformed alloy, the operation efficiency of these mechanisms is less than that of the permanent mould casting AZ91D alloy, thus its microstructural evolution is relatively slow and the resulting grain size is relatively large. These are attributed to the differences in their original microstructures. The Al-rich surface layer can obviously improve the corrosion resistance in NaCl aqueous solution. A proper solution heat treatment (at 415 ℃ for 1 h) can further increase the corrosion resistance. In order to improve corrosion resistance, increasing the amount and improving the distribution uniformity of the Al-rich phase are more effective than increasing the Al solubility in the matrix.展开更多
In this study, austenitizing heat treatment before hot stamping of Al-10% Si coated boron steel is first investigated through en- vironment scanning electron microscopy (ESEM) equipped with energy dispersive x-ray a...In this study, austenitizing heat treatment before hot stamping of Al-10% Si coated boron steel is first investigated through en- vironment scanning electron microscopy (ESEM) equipped with energy dispersive x-ray analysis (EDAX). The cracking be- havior of the coating was evaluated using Gleeble 3500, a thermo-mechanical simulator under uniaxial plastic deformation at elevated temperatures. The extent and number of cracks developed in the coating were carefully assessed through an optical microscope. The coating layer under hot-dipped condition consists of an Al-Si eutectic matrix, Fe2Al7Si, Fe3Al2Si3 and Fe2Al5, from the coating surface to the steel substrate. The coating layer remains dense, continuous and smooth. During austenitization, the Al-rich Fe-Al intermetallics in the coating transform to more Fe-rich intermetallics, promoted by the Fe diffusion process. The coating finally shows the coexistence of two types of Fe-Al intermetallics, namely, FeAl2 and FeAl. Microcracks and Kirkendall voids occur in the coating layer and diffusion zone, respectively. The coating is heavily cracked and broken into segments during the hot tensile tests. Bare steel exposed between the separate segments of the coating is oxidized and covered with a thin FeOx layer. The appearance of the oxide decreases the adhesion of the Al-Si coating. It is found that the ductile FeAl is preferred as a coating microstructure instead of the brittle FeAl2. Therefore, the ductility of the Al-Si coating on hot stamping boron steer could be enhanced by controlling the ductile Fe-rich intermetallic phase transformations within it during austenitization. Experiments indicate that a higher austenitizing temperature or longer dwell time facilitate the Fe-rich inter- metallics transformation, increasing the volume fraction of FeAl. This phase transformation also contributes to reducing the crack density and depth.展开更多
基金the National Natural Science Foundation of China(No.52265043)Science and Technology Plan,Guizhou Province,China(No.ZK2021(267))+2 种基金Technology Achievements Application and Industrialization Project,Guizhou Province,China(No.2021(067))Cultivation Project of Guizhou University,China(No.2019(23))Lastly,we thank the Shanghai Synchrotron Radiation Facility(SSRF)for providing the synchrotron radiation beamtime.
文摘Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.
文摘The 430 ℃ isothermal section of the Al 4Mg Sc Zr quaternary system in the Al rich range was determined by means of equilibrium alloys with the use of microstructure, X ray diffraction analysis and electron probe microanalysis. There coexist three single phase fields, two two phase fields and one three phase field. It is established that the phase Al 3Sc 10.5 Zr 00.5 with L1 2 structure and Al 3Zr 10.8 Sc 00.2 with DO 23 structure are in equilibrium with the α solid solution, Zr being dissolved in Al 3Sc, further substituting for about 50% Sc(mole fraction) whilst Sc is present in the phase Al 3Zr and the maximum substitution for Zr is about 20%.
文摘Phase relation of the aluminium magnesium scandium system in the Al rich range at 430 ℃ was investigated by means of multiphase diffusion couples along with electron probe microanalysis, X ray diffraction and electron microscopy techniques. It consists of five single phase fields, four 2 phase fields and one 3 phase field. The maximum solid solubilities of Mg and Sc in α (Al) solid solution at 430 ℃ are about 15.27%Mg(mole fraction) and 0.33%Sc, respectively. The maximum solid solubilities of Sc in Mg 2Al 3 and Mg 17 Al 12 are about 1.08% and 0.03% at the same temperature. The diffusion path at 430 ℃ was constructed and interpreted by means of the Al Mg Sc equilibrium phase diagram assuming that local equilibrium is established at the phase boundaries.
基金Project(2012CB619600)supported by the National Basic Research Program of ChinaProject(50775086)supported by the National Natural Science Foundation of China
文摘The Fe-containing intermetallic compounds with high melting point in hypereutectic Al-Si alloys can improve the heat resistance and wear resistance at elevated temperatures. However, the long needle-like Fe-containing compounds in the alloys produced by conventional casting process are detrimental to the strength of matrix. The effect of ultrasonic vibration (USV) on the morphology change of Fe-containing intermetallic compounds in the hypereutectic Al-17Si-xFe (x=2, 3, 4, 5) alloys was systematically studied. The results show that, the Fe-containing intermetallic compounds are mainly composed of long needle-like β-Al5FeSi phase with a small amount of plate-like δ-Al4FeSi2 phase in Al-17Si-2Fe alloy produced by conventional casting process. With the increase of Fe content from 2% to 5% in the alloys, the amount of plate-like or coarse needle-like δ-Al4FeSi2 phase increases while the amount of long needle-like β-Al5FeSi phases decreases. In Al-17Si-5Fe alloy, the Fe-containing intermetallic compounds exist mainly as coarse needle-like δ-Al4FeSi2 phase. After USV treatment, the Fe-containing compounds in the Al-17Si-xFe alloys are refined and exist mainly as δ-Al4FeSi2 particles, with average grain size ranging from 26 μm to 37 μm, and only a small amount of β-Al5FeSi phases remain. The mechanism of USV on the morphology of Fe-containing intermetallic compounds was also discussed.
基金Project(2007CB613706) supported by the National Basic Research Program of ChinaProject(3ZS042-B25-003) supported by the Natural Science Foundation of Gansu Province, ChinaProject(SKL03004) supported by the Development Program for Outstanding Young Teachers in Lanzhou University of Technology, China
文摘The microstructural evolution characteristics of thermo-mechanically affected zone were investigated during friction stir processing (FSP) of the thixoformed AZ91D alloy. Simultaneously, an Al-rich surface layer was prepared by combination of Al powder using FSP method. The results indicate that the dynamic recrystallization and mechanical separation (including splitting and fracture of the primary grains) are the main mechanisms of grain refinement. For the thixoformed alloy, the operation efficiency of these mechanisms is less than that of the permanent mould casting AZ91D alloy, thus its microstructural evolution is relatively slow and the resulting grain size is relatively large. These are attributed to the differences in their original microstructures. The Al-rich surface layer can obviously improve the corrosion resistance in NaCl aqueous solution. A proper solution heat treatment (at 415 ℃ for 1 h) can further increase the corrosion resistance. In order to improve corrosion resistance, increasing the amount and improving the distribution uniformity of the Al-rich phase are more effective than increasing the Al solubility in the matrix.
基金supported by the National Natural Science Foundation of China(Grant No.51275185)the National Basic Research Program of China("973"Program)(Grant No.2010CB630802-3)
文摘In this study, austenitizing heat treatment before hot stamping of Al-10% Si coated boron steel is first investigated through en- vironment scanning electron microscopy (ESEM) equipped with energy dispersive x-ray analysis (EDAX). The cracking be- havior of the coating was evaluated using Gleeble 3500, a thermo-mechanical simulator under uniaxial plastic deformation at elevated temperatures. The extent and number of cracks developed in the coating were carefully assessed through an optical microscope. The coating layer under hot-dipped condition consists of an Al-Si eutectic matrix, Fe2Al7Si, Fe3Al2Si3 and Fe2Al5, from the coating surface to the steel substrate. The coating layer remains dense, continuous and smooth. During austenitization, the Al-rich Fe-Al intermetallics in the coating transform to more Fe-rich intermetallics, promoted by the Fe diffusion process. The coating finally shows the coexistence of two types of Fe-Al intermetallics, namely, FeAl2 and FeAl. Microcracks and Kirkendall voids occur in the coating layer and diffusion zone, respectively. The coating is heavily cracked and broken into segments during the hot tensile tests. Bare steel exposed between the separate segments of the coating is oxidized and covered with a thin FeOx layer. The appearance of the oxide decreases the adhesion of the Al-Si coating. It is found that the ductile FeAl is preferred as a coating microstructure instead of the brittle FeAl2. Therefore, the ductility of the Al-Si coating on hot stamping boron steer could be enhanced by controlling the ductile Fe-rich intermetallic phase transformations within it during austenitization. Experiments indicate that a higher austenitizing temperature or longer dwell time facilitate the Fe-rich inter- metallics transformation, increasing the volume fraction of FeAl. This phase transformation also contributes to reducing the crack density and depth.