HUMAN herpes simplex virus esophagitis (HSVE) was first reported in 1940 by Johnson. ^1HSVE usually occurs in immunocompromised patients,such as those with acquired immunodeficiency syndrome (AIDS), 2-4 malignanc...HUMAN herpes simplex virus esophagitis (HSVE) was first reported in 1940 by Johnson. ^1HSVE usually occurs in immunocompromised patients,such as those with acquired immunodeficiency syndrome (AIDS), 2-4 malignancies, cutaneous burns, connective tissue diseases, inflammatory bowel disease, those taking immuno-suppressive therapy, and those undergoing organ transplantation,5 etc. In the immunocompetent individuals, HSVE is rare, having been reported in 39 cases and mainly affecting young males^6,7 The aim of this study was to delineate the clinical experience in the diagnosis of HSVE using rapid in situ hybridization and assess the various detection methods.展开更多
Aim To synthesize isonucleoside-incorporated oligonucleotides and investigatetheir binding abilities with complementary sequences. Methods The synthesis was performed on DNAsynthesizer, and the binding behavior was in...Aim To synthesize isonucleoside-incorporated oligonucleotides and investigatetheir binding abilities with complementary sequences. Methods The synthesis was performed on DNAsynthesizer, and the binding behavior was investigated by thermal denaturation studies. Results Fourkinds of single isonucleoside containing oligonucleotides were synthesized. The results of thermaldenaturation showed that the existence of isonucleoside decreased the stability of duplex, and theeffect was more obvious when the isonucleoside was in the middle of the sequence. No obviousdifference was observed when 6'-OH of isonucleoside was free or was protected by allyl group.Conclusions The existence of isonucleoside in oli-gonucleotide makes chain twist and decreased thestability of duplex.展开更多
Transcription factor and sequence specific DNA interactions play important roles in drug genome and transcription diagnosis. Gold nanoparticles show high sensitivity, stability and compatibility for biological molecul...Transcription factor and sequence specific DNA interactions play important roles in drug genome and transcription diagnosis. Gold nanoparticles show high sensitivity, stability and compatibility for biological molecules as electrochemical intercalators. Here unimolecular hairpin oligonucleotides were self-assembled onto Au electrode surface and elongation on solid phase was carried out to double strand oligonucleotides with transcription factor NF-r,13 binding site. Gold nanoparticle-catalyzed Ag deposition was detected by anodic stripping voltammetry (ASV) for NF-kB binding. It was indicated that this method for sequence specific DNA binding protein detection shows pronounced specificity, sensitivity and we can find application in transcription regulation research, open reading frame characterization and functional gene inspection by this method.展开更多
The BRCA1 (Breast Cancer Anti-estrogen resistance-I), early-onset gene is expressed in cells of breast and other tissue and helps to repair damaged DNA or destroy cells in cases DNA cannot be repaired. When the BRCA...The BRCA1 (Breast Cancer Anti-estrogen resistance-I), early-onset gene is expressed in cells of breast and other tissue and helps to repair damaged DNA or destroy cells in cases DNA cannot be repaired. When the BRCA1 gene is damaged, then the DNA is not repaired appropriately and this enhances the risk for cancer. Fluorescence and UV-visible thermal studies were performed for WT (wild type) and MT (mutant type targets) full systems. The target DNAs used were in the form of short oligonucleotides, genomic DNA. The probe system was used for detection of WT and SNP alleles of human BRCAI [(170-190, G---~T) and (290-310, G---~T)]. The Cy5 dye attached to a probe oligonucleotide (10-mer) undergoes a fluorescence intensity change on hybridisation of the probe to the WT compared to MT targets. Our results indicate that the system consisting of the target sequence and the one probe oligonucleotides bearing the Cy5 dye assemble correctly at the specified target. Once the full system (probe and target) is arranged under suitable conditions, a red-shift emission and change in fluorescence intensity are seen at a suitable wavelength. Thermal studies also showed significant differences in T,, between WT and MT. The results suggest that the differences in the fluorescence intensity at 665 nm and the spectrophotometric T,,,cs) for the WT and MT can be attributed to the type of binding of the probe to the target. The systems were sensitive to single nucleotide polymorphisms and this may help in high throughput applications in genetic testing and molecular diagnostics.展开更多
This review highlights the most recent advances in click chemistry associated with DNA.Cu[I]-catalyzed azides-alkynes Huisgen cycloadditions(CuAAC)and a strain-promoted alkyne-azide cycloaddition(SPAAC)are two popular...This review highlights the most recent advances in click chemistry associated with DNA.Cu[I]-catalyzed azides-alkynes Huisgen cycloadditions(CuAAC)and a strain-promoted alkyne-azide cycloaddition(SPAAC)are two popular click reactions that have great impact in DNA science.The simplicity,versatility,orthogonality,and high efficiency of click reaction along with a stable triazole product have been instrumental for the successful application of this reaction in the field of nucleic acid chemistry.CuAAC and SPAAC reactions have been widely used for DNA modification,including DNA labeling,metallization,conjugation,cross-linking,and ligation.Modified oligodeoxynucleotides obtained from click reaction have been extensively applied in the fields of drug discovery,nanotechnology,bio-conjugation,and material sciences,among others.The most recent advances in the synthesis and applications of clickable DNAs are discussed in detail in this article.展开更多
We previously demonstrated that polypod-like structured DNA, or polypodna, constructed with three or more oligodeoxynucleotides (ODNs), is efficiently taken up by immune cells such as dendritic cells and macrophages...We previously demonstrated that polypod-like structured DNA, or polypodna, constructed with three or more oligodeoxynucleotides (ODNs), is efficiently taken up by immune cells such as dendritic cells and macrophages, depending on its structural complexity. The ODNs comprising the polypodna should bend to form the polypod-like structure, and may do so by adopting either a bend- type conformation or a cross-type conformation. Here, we tried to elucidate the orientation and bending of ODNs in polypodnas using atomic force microscopy (AFM). We designed two types of pentapodnas (i.e., a polypodna with five pods) using 60- to 88-base ODNs, which were then immobilized on DNA origami frames. AFM imaging showed that the ODNs in the pentapodna adopted bend-type conformations. Tetrapodna and hexapodna also adopted bend-type conformations when they were immobilized on frames under unconstrained conditions. These findings provide useful information toward the coherent design of, and the structure-activity relationships for, a variety of DNA nanostructures.展开更多
文摘HUMAN herpes simplex virus esophagitis (HSVE) was first reported in 1940 by Johnson. ^1HSVE usually occurs in immunocompromised patients,such as those with acquired immunodeficiency syndrome (AIDS), 2-4 malignancies, cutaneous burns, connective tissue diseases, inflammatory bowel disease, those taking immuno-suppressive therapy, and those undergoing organ transplantation,5 etc. In the immunocompetent individuals, HSVE is rare, having been reported in 39 cases and mainly affecting young males^6,7 The aim of this study was to delineate the clinical experience in the diagnosis of HSVE using rapid in situ hybridization and assess the various detection methods.
文摘Aim To synthesize isonucleoside-incorporated oligonucleotides and investigatetheir binding abilities with complementary sequences. Methods The synthesis was performed on DNAsynthesizer, and the binding behavior was investigated by thermal denaturation studies. Results Fourkinds of single isonucleoside containing oligonucleotides were synthesized. The results of thermaldenaturation showed that the existence of isonucleoside decreased the stability of duplex, and theeffect was more obvious when the isonucleoside was in the middle of the sequence. No obviousdifference was observed when 6'-OH of isonucleoside was free or was protected by allyl group.Conclusions The existence of isonucleoside in oli-gonucleotide makes chain twist and decreased thestability of duplex.
基金This research is financially supported by the National Natural Science Foundation (No. 90606027 60501010).
文摘Transcription factor and sequence specific DNA interactions play important roles in drug genome and transcription diagnosis. Gold nanoparticles show high sensitivity, stability and compatibility for biological molecules as electrochemical intercalators. Here unimolecular hairpin oligonucleotides were self-assembled onto Au electrode surface and elongation on solid phase was carried out to double strand oligonucleotides with transcription factor NF-r,13 binding site. Gold nanoparticle-catalyzed Ag deposition was detected by anodic stripping voltammetry (ASV) for NF-kB binding. It was indicated that this method for sequence specific DNA binding protein detection shows pronounced specificity, sensitivity and we can find application in transcription regulation research, open reading frame characterization and functional gene inspection by this method.
文摘The BRCA1 (Breast Cancer Anti-estrogen resistance-I), early-onset gene is expressed in cells of breast and other tissue and helps to repair damaged DNA or destroy cells in cases DNA cannot be repaired. When the BRCA1 gene is damaged, then the DNA is not repaired appropriately and this enhances the risk for cancer. Fluorescence and UV-visible thermal studies were performed for WT (wild type) and MT (mutant type targets) full systems. The target DNAs used were in the form of short oligonucleotides, genomic DNA. The probe system was used for detection of WT and SNP alleles of human BRCAI [(170-190, G---~T) and (290-310, G---~T)]. The Cy5 dye attached to a probe oligonucleotide (10-mer) undergoes a fluorescence intensity change on hybridisation of the probe to the WT compared to MT targets. Our results indicate that the system consisting of the target sequence and the one probe oligonucleotides bearing the Cy5 dye assemble correctly at the specified target. Once the full system (probe and target) is arranged under suitable conditions, a red-shift emission and change in fluorescence intensity are seen at a suitable wavelength. Thermal studies also showed significant differences in T,, between WT and MT. The results suggest that the differences in the fluorescence intensity at 665 nm and the spectrophotometric T,,,cs) for the WT and MT can be attributed to the type of binding of the probe to the target. The systems were sensitive to single nucleotide polymorphisms and this may help in high throughput applications in genetic testing and molecular diagnostics.
基金the financial support from the UWM Research Growth Initiative(RGI101X234)the Greater Milwaukee Foundation(Shaw Scientist Award)the National Cancer Institute(1R15CA152914-01)
文摘This review highlights the most recent advances in click chemistry associated with DNA.Cu[I]-catalyzed azides-alkynes Huisgen cycloadditions(CuAAC)and a strain-promoted alkyne-azide cycloaddition(SPAAC)are two popular click reactions that have great impact in DNA science.The simplicity,versatility,orthogonality,and high efficiency of click reaction along with a stable triazole product have been instrumental for the successful application of this reaction in the field of nucleic acid chemistry.CuAAC and SPAAC reactions have been widely used for DNA modification,including DNA labeling,metallization,conjugation,cross-linking,and ligation.Modified oligodeoxynucleotides obtained from click reaction have been extensively applied in the fields of drug discovery,nanotechnology,bio-conjugation,and material sciences,among others.The most recent advances in the synthesis and applications of clickable DNAs are discussed in detail in this article.
文摘We previously demonstrated that polypod-like structured DNA, or polypodna, constructed with three or more oligodeoxynucleotides (ODNs), is efficiently taken up by immune cells such as dendritic cells and macrophages, depending on its structural complexity. The ODNs comprising the polypodna should bend to form the polypod-like structure, and may do so by adopting either a bend- type conformation or a cross-type conformation. Here, we tried to elucidate the orientation and bending of ODNs in polypodnas using atomic force microscopy (AFM). We designed two types of pentapodnas (i.e., a polypodna with five pods) using 60- to 88-base ODNs, which were then immobilized on DNA origami frames. AFM imaging showed that the ODNs in the pentapodna adopted bend-type conformations. Tetrapodna and hexapodna also adopted bend-type conformations when they were immobilized on frames under unconstrained conditions. These findings provide useful information toward the coherent design of, and the structure-activity relationships for, a variety of DNA nanostructures.