Aim To synthesize isonucleoside-incorporated oligonucleotides and investigatetheir binding abilities with complementary sequences. Methods The synthesis was performed on DNAsynthesizer, and the binding behavior was in...Aim To synthesize isonucleoside-incorporated oligonucleotides and investigatetheir binding abilities with complementary sequences. Methods The synthesis was performed on DNAsynthesizer, and the binding behavior was investigated by thermal denaturation studies. Results Fourkinds of single isonucleoside containing oligonucleotides were synthesized. The results of thermaldenaturation showed that the existence of isonucleoside decreased the stability of duplex, and theeffect was more obvious when the isonucleoside was in the middle of the sequence. No obviousdifference was observed when 6'-OH of isonucleoside was free or was protected by allyl group.Conclusions The existence of isonucleoside in oli-gonucleotide makes chain twist and decreased thestability of duplex.展开更多
Transcription factor and sequence specific DNA interactions play important roles in drug genome and transcription diagnosis. Gold nanoparticles show high sensitivity, stability and compatibility for biological molecul...Transcription factor and sequence specific DNA interactions play important roles in drug genome and transcription diagnosis. Gold nanoparticles show high sensitivity, stability and compatibility for biological molecules as electrochemical intercalators. Here unimolecular hairpin oligonucleotides were self-assembled onto Au electrode surface and elongation on solid phase was carried out to double strand oligonucleotides with transcription factor NF-r,13 binding site. Gold nanoparticle-catalyzed Ag deposition was detected by anodic stripping voltammetry (ASV) for NF-kB binding. It was indicated that this method for sequence specific DNA binding protein detection shows pronounced specificity, sensitivity and we can find application in transcription regulation research, open reading frame characterization and functional gene inspection by this method.展开更多
文摘Aim To synthesize isonucleoside-incorporated oligonucleotides and investigatetheir binding abilities with complementary sequences. Methods The synthesis was performed on DNAsynthesizer, and the binding behavior was investigated by thermal denaturation studies. Results Fourkinds of single isonucleoside containing oligonucleotides were synthesized. The results of thermaldenaturation showed that the existence of isonucleoside decreased the stability of duplex, and theeffect was more obvious when the isonucleoside was in the middle of the sequence. No obviousdifference was observed when 6'-OH of isonucleoside was free or was protected by allyl group.Conclusions The existence of isonucleoside in oli-gonucleotide makes chain twist and decreased thestability of duplex.
基金This research is financially supported by the National Natural Science Foundation (No. 90606027 60501010).
文摘Transcription factor and sequence specific DNA interactions play important roles in drug genome and transcription diagnosis. Gold nanoparticles show high sensitivity, stability and compatibility for biological molecules as electrochemical intercalators. Here unimolecular hairpin oligonucleotides were self-assembled onto Au electrode surface and elongation on solid phase was carried out to double strand oligonucleotides with transcription factor NF-r,13 binding site. Gold nanoparticle-catalyzed Ag deposition was detected by anodic stripping voltammetry (ASV) for NF-kB binding. It was indicated that this method for sequence specific DNA binding protein detection shows pronounced specificity, sensitivity and we can find application in transcription regulation research, open reading frame characterization and functional gene inspection by this method.