期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
Small⁃size Au nanoparticles anchored on pyrenyl⁃graphdiyne for N_(2)electroreduction
1
作者 LIU Chang ZHANG Chao LU Tongbu 《无机化学学报》 北大核心 2025年第1期174-182,共9页
A gold catalyst of Au/pyrenyl‑graphdiyne(Pyr‑GDY)was prepared by anchoring small size of gold nanoparticles(Au NPs)on the surface of Pyr‑GDY for electrocatalytic nitrogen reduction reaction(eNRR),in which Au NPs with ... A gold catalyst of Au/pyrenyl‑graphdiyne(Pyr‑GDY)was prepared by anchoring small size of gold nanoparticles(Au NPs)on the surface of Pyr‑GDY for electrocatalytic nitrogen reduction reaction(eNRR),in which Au NPs with a size of approximately 3.69 nm was evenly distributed on spongy‑like porous Pyr‑GDY.The catalyst exhibited a good electrocatalytic activity for N_(2)reduction in a nitrogen‑saturated electrolyte,with an ammonia yield of 32.1μg·h^(-1)·mg_(cat)^(-1)at-0.3 V(vs RHE),3.5 times higher than that of Au/C(Au NPs anchored on carbon black).In addition,Au/Pyr‑GDY showed a Faraday efficiency(FE)of 26.9%for eNRR,and a good catalysis durability for over 22 h. 展开更多
关键词 graphdiyne small‑size Au nanoparticle electrocatalytic nitrogen reduction
下载PDF
朱鹮牌三珍酒研制技术报告
2
作者 翟映云 张天虎 李天刚 《酿酒科技》 1992年第5期43-44,共2页
将黑米、香米、寸米按4:3:3进行配料,按传统黄酒的酿造方法酿造出营养价值高,经济效益显著的朱鹮(音玄)牌三珍酒。□(汉冯李)
关键词 黄酒 原料 黑米 香米 寸米
下载PDF
Size-control growth of thermally stable Au nanoparticles encapsulated within ordered mesoporous carbon framework 被引量:3
3
作者 王帅 王杰 +3 位作者 朱小娟 王建强 Osamu Terasaki 万颖 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第1期61-72,共12页
Simultaneously controlling the size of Au nanoparticles and immobilizing their location to specific active sites while hindering migration and sintering at elevated temperatures is a current challenge within materials... Simultaneously controlling the size of Au nanoparticles and immobilizing their location to specific active sites while hindering migration and sintering at elevated temperatures is a current challenge within materials chemistry.Typical methods require the use of protecting agents to control the properties of Au nanoparticles and therefore it is difficult to decouple the influence of the protecting agent and the support material.By functionalizing the internal surface area of mesoporous carbon supports with thiol groups and implementing a simple acid extraction step,we are able to design the resulting materials with precise control over the Au nanoparticle size without the need for the presence of any protecting group,whilst simultaneously confining the nanoparticles to within the internal porous network.Monodispersed Au nanoparticles in the absence of protecting agents were encapsulated into ordered mesoporous carbon at various loading levels via a coordination-assisted self-assembly approach.The X-ray diffractograms and transmission electron microscopy micrographs show that the particles have controlled and well-defined diameters between 3 and 18 nm at concentrations between 1.1 and 9.0 wt%.The Au nanoparticles are intercalated into the pore matrix to different degrees depending on the synthesis conditions and are stable after high temperature treatment at 600 °C.N2 adsorption-desorption isotherms show that the Au functionalized mesoporous carbon catalysts possess high surface areas(1269–1743 m^2/g),large pore volumes(0.78–1.38 cm^3/g)and interpenetrated,uniform bimodal mesopores with the primary larger mesopore lying in the range of 3.4–5.7 nm and the smaller secondary mesopore having a diameter close to 2 nm.X-ray absorption near extended spectroscopy analysis reveals changes to the electronic properties of the Au nanoparticles as a function of reduced particle size.The predominant factors that significantly determine the end Au nanoparticle size is both the thiol group concentration and subjecting the as-made materials to an additional concentrated sulfuric acid extraction step. 展开更多
关键词 Gold nanoparticles Size Carbon MESOPOROUS
下载PDF
Size control and its mechanism of SnAg nanoparticles 被引量:1
4
作者 张卫鹏 邹长东 +2 位作者 赵炳戈 翟启杰 高玉来 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期750-757,共8页
Sn3.5Ag (mass fraction, %) nanoparticles were synthesized by an improved chemical reduction method at room temperature. 1,10-phenanthroline and sodium borohydride were selected as the surfactant and reducing agent, ... Sn3.5Ag (mass fraction, %) nanoparticles were synthesized by an improved chemical reduction method at room temperature. 1,10-phenanthroline and sodium borohydride were selected as the surfactant and reducing agent, respectively. It was found that no obvious oxidation of the synthesized nanoparticles was traced by X-ray diffraction. In addition, the results show that the density of primary particles decreases with decreasing the addition rate of the reducing agent. Moreover, the slight particle agglomeration and slow secondary particle growth can result in small-sized nanoparticles. Meanwhile, the effect of surfactant concentration on the particle size can effectively be controlled when the reducing agent is added into the precursor at an appropriate rate. In summary, the capping effect caused by the surfactant molecules coordinating with the nanoclusters will restrict the growth of the nanoparticles. The larger the mass ratio of the surfactant to the precursor is, the smaller the particle size is. 展开更多
关键词 Sn3.5Ag size control NANOPARTICLES chemical reduction method
下载PDF
Synthesis of Nanometer Cobalt Blue Pigment by Microemulsion Method and Control of Diameter of Particle 被引量:9
5
作者 杨桂琴 韩冰 +2 位作者 王雪松 严乐美 王秀宇 《Transactions of Tianjin University》 EI CAS 2002年第4期291-294,共4页
The nanometer cobalt blue pigments were prepared by microemulsion method. Using dynamic light scattering(DLS) test method, the influences of water content on the size of liquid drop of microemulsion and the liquid dro... The nanometer cobalt blue pigments were prepared by microemulsion method. Using dynamic light scattering(DLS) test method, the influences of water content on the size of liquid drop of microemulsion and the liquid drop of microemulsion on the final diameter of nanometer particle were studied in the course of preparation. Accordingly, the method to control the diameter of nanometer particle by changing water content was established. The nanometer cobalt blue particles were confirmed by XRD and TEM. Color parameters of pigments were determined. The quantum size effect of the pigments was discussed. 展开更多
关键词 MICROEMULSION dynamic light scattering cobalt blue pigment diameter of nanometer particle quantum size effect
全文增补中
Improved charge transfer by size-dependent plasmonic Au on C_3N_4 for efficient photocatalytic oxidation of RhB and CO_2 reduction 被引量:9
6
作者 Xin Li Chongyang Liu +3 位作者 Dongyao Wu JinZe Li Pengwei Huo Huiqin Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第6期928-939,共12页
A series of Au/g-C3N4(Au/CN)nanocomposites were successfully prepared,where g-C3N4 nanosheets(CN NSs)served as a substrate for the growth of different sized Au nanoparticles(Au NPs)using the constant temperature bath-... A series of Au/g-C3N4(Au/CN)nanocomposites were successfully prepared,where g-C3N4 nanosheets(CN NSs)served as a substrate for the growth of different sized Au nanoparticles(Au NPs)using the constant temperature bath-reduction method.The effect of Au NP size on electron transfer efficiency between the interfaces of the nanocomposite was studied.The three-dimensional finite-difference time-domain results revealed that larger Au NPs showed increased strength of the localized surface plasmon resonance effect.An increased number of high-energy electrons were available for transfer from Au NPs to CN under the visible light irradiation,inhibiting electron transfer from CN to Au NPs.Photoelectrochemical performance analysis showed that smaller Au NPs exhibited higher separation efficiency of the electron-hole pairs photo-generated with reasonable distribution density.These results are favorable for the improvement of photocatalytic performance.Compared to other nanocomposites,the 3-Au/CN sample(prepared using 3 mL HAuCl4 solution)with reasonable distribution density and small Au NPs exhibited the best photodegradation activity(92.66%)of RhB in 30 min under the visible light irradiation and photoreduction performance of CO2 to CO and CH4 with yields of 77.5 and 38.5μmol/g,respectively,in 8 h under UV light irradiation.Considering the experimental results in the context of the literature,a corresponding size-dependent photocatalytic mechanism was proposed. 展开更多
关键词 Au/g-C3N4 NANOSHEET Size dependence CO2 photoreduction Photocatalyst
下载PDF
Preparation of Composite Microporous Silica Membranes Using TEOS and 1,2-Bis(triethoxysilyl)ethane as Precursors for Gas Separation 被引量:2
7
作者 漆虹 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第3期404-409,共6页
This paper reports on a new microporous composite silica membrane prepared via acid-catalyzed polymeric route of sol-gel method with tetraethylorthosilicate(TEOS)and a bridged silsesquioxane[1,2-bis(triethoxysilyl)eth... This paper reports on a new microporous composite silica membrane prepared via acid-catalyzed polymeric route of sol-gel method with tetraethylorthosilicate(TEOS)and a bridged silsesquioxane[1,2-bis(triethoxysilyl)ethane, BTESE]as precursors.A stable nano-sized composite silica sol with a mean volume size of^5 nm was synthesized. A 150 nm-thick defect-free composite silica membrane was deposited on disk support consisting of macroporous α-Al2O3 and mesoporousγ-Al2O3 intermediate layer by using dip-coating approach,followed by calcination under pure nitrogen atmosphere.The composite silica membranes exhibit molecular sieve properties for small gases like H2,CO2,O2,N2,CH4 and SF6 with hydrogen permeances in the range of(1-4)×10 -7mol·m -2·s -1·Pa -1(measured at 200°C,3.0×105 Pa).With respect to the membrane calcined at 500°C,it is found that the permselectivities of H 2 (0.289 nm)with respect to N2(0.365 nm),CH4(0.384 nm)and SF6(0.55 nm)are 22.9,42 and>1000,respectively, which are all much higher than the corresponding Knudsen values(H2/N2=3.7,H2/CH4=2.8,and H2/SF6=8.5). 展开更多
关键词 TETRAETHYLORTHOSILICATE 1 2-bis(triethoxysilyl)ethane composite silica membranes gas separation mo- lecular sieving
下载PDF
Hierarchically porous S-scheme CdS/UiO-66 photocatalyst for efficient 4-nitroaniline reduction 被引量:4
8
作者 Jinxin Wei Yawen Chen +2 位作者 Hongyang Zhang Zanyong Zhuang Yan Yu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第1期78-86,共9页
Unveiling the pore-size performance of metal organic frameworks(MOFs)is imperative for controllable design of sophisticated catalysts.Herein,UiO-66 with distinct macropores and mesopores were intentionally created and... Unveiling the pore-size performance of metal organic frameworks(MOFs)is imperative for controllable design of sophisticated catalysts.Herein,UiO-66 with distinct macropores and mesopores were intentionally created and served as substrates to create advanced CdS/UiO-66 catalysts.The pore size impacted the spatial distribution of CdS nanoparticles(NPs):CdS tended to deposit on the external surface of mesoporous UiO-66,but spontaneously penetrated into the large cavity of macroporous UiO-66 nanocage.Normalized to unit amount of CdS,the photocatalytic reaction constant of macroporous CdS/UiO-66 over 4-nitroaniline reduction was~3 folds of that of mesoporous counterpart,and outperformed many other reported state-of-art CdS-based catalysts.A confinement effect of CdS NPs within UiO-66 cage could respond for its high activity,which could shorten the electron-transport distance of NPs-MOFs-reactant,and protect the active CdS NPs from photocorrosion.The finding here provides a straightforward paradigm and mechanism to rationally fabricate advance NPs/MOFs for diverse applications. 展开更多
关键词 Pore-size Effect NANOCONFINEMENT Hierarchically porous MOFs NPs/MOFs NANOCAGE
下载PDF
Synthesis of size-controllable Fe3O4 magnetic submicroparticles and its biocompatible evaluation in vitro 被引量:1
9
作者 田庆华 宁文博 +2 位作者 王惟嘉 袁秀洪 白志明 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2784-2791,共8页
Large scaled uniform and size-controllable magnetic submicroparticles(MSPs) were synthesized via solvothermal method with ferric chloride as iron source and sodium acetate as trapping agent. The influence of Fe^(3+) a... Large scaled uniform and size-controllable magnetic submicroparticles(MSPs) were synthesized via solvothermal method with ferric chloride as iron source and sodium acetate as trapping agent. The influence of Fe^(3+) and Na Ac contents on the size distribution of MSPs was investigated. The structural and morphological properties of the synthesized particles were studied by scanning electron microscopy(SEM), X-ray power diffraction(XRD) and vibrating sample magnetometer(VSM). The well-dispersed MSPs with size of 100-1000 nm were obtained by simply adjusting the contents of Fe^(3+) and NaA c. In addition, the hemolysis and cytotoxicity of Fe_3O_4 MSPs, and their ability to case arrest in cell life-cycles were studied. The results indicate that larger size could lead to lower hemolysis. From MTT(3-(4,5-dimethylthuazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, the interactions between MSPs and adhesive mouse fibroblast cell line(L929) were probed. Larger size of Fe_3O_4 MSPs demonstrates lower cell viability following an exposure to the cells. 展开更多
关键词 MAGNETITE submicroparticles BIOCOMPATIBILITY HEMOLYSIS CYTOTOXICITY
下载PDF
Composition-controlled synthesis of platinum and palladium nanoalloys as highly active electrocatalysts for methanol oxidation 被引量:4
10
作者 Haiqiang Zhao Weihong Qi +2 位作者 Xinfeng Zhou Haofei Wu Yejun Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第2期342-349,共8页
Platinum and palladium(PtPd)alloy nanoparticles(NPs)are excellent catalysts for direct methanol fuel cells.In this study,we developed PtPd alloy NPs through the co‐reduction of K2PtCl4and Na2PdCl4in a polyol synthesi... Platinum and palladium(PtPd)alloy nanoparticles(NPs)are excellent catalysts for direct methanol fuel cells.In this study,we developed PtPd alloy NPs through the co‐reduction of K2PtCl4and Na2PdCl4in a polyol synthesis environment.During the reaction,the feed molar ratio of the two precursors was carried over to the final products,which have a narrow size distribution with a mean size of approximately4nm.The catalytic activity for methanol oxidation reactions possible depends closely on the composition of as‐prepared PtPd alloy NPs,and the NPs with a Pt atomic percentage of approximately75%result in higher activity and stability with a mass specific activity that is7times greater than that of commercial Pt/C catalysts.The results indicate that through composition control,PtPd alloy NPs can improve the effectiveness of catalytic performance. 展开更多
关键词 Platinum and palladium alloy nanoparticles Composition and size control Methanol oxidation
下载PDF
Dependence of Optical Absorption in Silicon Nanostructures on Size of Silicon Nanoparticles
11
作者 丁文革 苑静 +3 位作者 孟令海 武树杰 于威 傅广生 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第4期688-692,共5页
The amorphous silicon nanoparticles (Si NPs) embedded in silicon nitride (SiNx) films prepared by helicon wave plasma-enhanced chemical vapor deposition (HWP-CVD) technique are studied. From Raman scattering inv... The amorphous silicon nanoparticles (Si NPs) embedded in silicon nitride (SiNx) films prepared by helicon wave plasma-enhanced chemical vapor deposition (HWP-CVD) technique are studied. From Raman scattering investigation, we determine that the deposited film has the structure of silicon nanocrystals embedded in silicon nitride (nc-Si/SiNx) thin film at a certain hydrogen dilution amount. The analysis of optical absorption spectra implies that the Si NPs is affected by quantum size effects and has the nature of an indirect-band-gap semiconductor. Further, considering the effects of the mean Si NP size and their dispersion on oscillator strength, and quantum-confinement, we obtain an analytical expression for the spectral absorbance of ensemble samples. Gaussian as well as lognormal size-distributions of the Si NPs are considered for optical absorption coefficient calculations. The influence of the particle size-distribution on the optical absorption spectra was systematically studied. We present the fitting of the optical absorption experimental data with our model and discuss the results. 展开更多
关键词 optical absorption silicon nanoparticles quantum size effects oscillator strength silicon nitride film
下载PDF
Using density functional calculations to elucidate atomic ordering of Pd-Rh nanoparticles at sizes relevant for catalytic applications
12
作者 Lorena Vega Hristiyan A.Aleksandrov Konstantin M.Neyman 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第11期1749-1757,共9页
Pd-Rh nanoparticles are known to easily undergo surface restructuring in reactive environment. This study quantifies, with the help of density functional(DFT) calculations and a novel topological approach, atomic orde... Pd-Rh nanoparticles are known to easily undergo surface restructuring in reactive environment. This study quantifies, with the help of density functional(DFT) calculations and a novel topological approach, atomic ordering and surface segregation effects in Pd-Rh particles with compositions 1:3, 1:1 and 3:1 containing up to 201 atoms(ca. 1.7 nm). The obtained data are used to reliably optimise energetically preferred atomic orderings in inaccessible by DFT Pd-Rh particles containing thousands of atoms and exhibiting sizes exceeding 5 nm, which are typical for catalytic metal particles. It is outlined, how segregation effects on the surface arrangement of Pd-Rh nanoalloy catalysts induced by adsorbates can be evaluated in a simple way within the present modelling setup. 展开更多
关键词 Density functional calculations Atomic ordering Pd Rh nanoparticles Size relevant
下载PDF
Influence of the finite size effect of Si(001)/SiO2 interface on the gate leakage current in nano-scale transistors
13
作者 Li Haixia Ji Aiming +1 位作者 Zhu Canyan Mao Lingfeng 《Journal of Southeast University(English Edition)》 EI CAS 2019年第3期341-350,共10页
With the device size gradually approaching the physical limit, the small changes of the Si(001)/SiO 2 interface in silicon-based devices may have a great impact on the device characteristics. Based on this, the bridge... With the device size gradually approaching the physical limit, the small changes of the Si(001)/SiO 2 interface in silicon-based devices may have a great impact on the device characteristics. Based on this, the bridge-oxygen model is used to construct the interface of different sizes, and the finite size effect of the interface between fine electronic structure silicon and silicon dioxide is studied. Then, the influence of the finite size effect on the electrical properties of nanotransistors is calculated by using the first principle. Theoretical calculation results demonstrate that the bond length of Si-Si and Si-O shows a saturate tendency when the size increases, while the absorption capacity of visible light and the barrier of the interface increase with the decrease of size. Finally, the results of two tunneling current models show that the finite size effect of Si(001)/SiO 2 interface can lead to a larger change in the gate leakage current of nano-scale devices, and the transition region and image potential, which play an important role in the calculation of interface characteristics of large-scale devices, show different sensitivities to the finite size effect. Therefore, the finite size effect of the interface on the gate leakage current cannot be ignored in nano-scale devices. 展开更多
关键词 finite size effect tunneling current nano-scale transistor
下载PDF
The Analysis of Nano-Size Inhomogeneities of Substrate by Surface Electrons over Superfluid Helium Film
14
作者 Yaroslav Yurievich Bezsmolnyy Victor Alekseevich Nikolaenko Svjatoslav Sergeevich Sokolov 《Journal of Physical Science and Application》 2016年第5期37-41,共5页
The surface quality of the substrate is a crucial factor in building "clean" quantum-dimensional systems. There are a number of micro-nano metric methods for the analysis state of surface: the atomic force microsco... The surface quality of the substrate is a crucial factor in building "clean" quantum-dimensional systems. There are a number of micro-nano metric methods for the analysis state of surface: the atomic force microscopy, the scanning tunneling microscopy and others. The SE (surface electron) over substrate has a "soft" hydrogen-like spectrum in the normal direction and the SEs mobility along is sensitive to the inhomogeneities of the substrate and this is analyzed in work. The values of electron mobility and energy of thermal activation are basic parameters of transport process which essentially depend on the helium film thickness. For analysis of nano-size inhomogeneities of substrate here we apply a new method providing a uniformity of the film thickness on substrate and fixing of measuring cell with supply wires. The plunger with electro-mechanic driver into a hermetic chamber is used for variation the helium level and consequently the film thickness. Considering values the conductivity and the variation of potential along surface is estimated the effective size of roughness from several nanometers (for non-saturated helium film) to 10^2 nm (for saturated film). 展开更多
关键词 Liquid helium surface electron low-dimensional systems nano-technology.
下载PDF
Characterization of mechanical properties and microstructures of spark plasma sintered and cryo-rolled AA2024−Y composites 被引量:1
15
作者 CH.S.VIDYASAGAR D.B.KARUNAKAR 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第6期1439-1451,共13页
The relationship between the microstructure and mechanical properties of the spark plasma sintered AA2024 Y composites subjected to cryo-rolling was investigated. Yttrium addition enhances the mechanical properties of... The relationship between the microstructure and mechanical properties of the spark plasma sintered AA2024 Y composites subjected to cryo-rolling was investigated. Yttrium addition enhances the mechanical properties of the composites by promoting grain refinement and precipitation. However, there is a clear trend of initial increase and later decrease in the properties. Also, it is observed that 0.3 wt.% of yttrium is the optimum amount of reinforcement content to obtain the highest mechanical properties. To further improve the tensile strength of the composites, cryo-rolling was performed on the composites under standard cryogenic conditions by several passes up to a reduction of 25%. The mechanical properties and the corresponding microstructures of composites after cryo-rolling were correlated. The SEM and TEM microstructures reveal that the samples exhibit dual size grains, i.e., nanograins are formed as sub-grains within the actual grain. Due to the grain size reduction and the increase in the dislocation density, the tensile properties are remarkably improved compared to those of the composites before cryo-rolling. The highest mechanical properties like hardness, YS and UTS are found to be 153 HV, 539 MPa and 572 MPa, respectively, with a reasonable ductility in the composite with 0.3 wt.% Y. 展开更多
关键词 secondary processing cryo-rolling NANOGRAINS yttrium addition dual size grains spark plasma sintering
下载PDF
Sum Frequency Generation Vibrational Spectra of Perovskite Nanocrystals at the Single-Nanocrystal and Ensemble Levels 被引量:1
16
作者 Renlong Zhu Quanbing Pei +2 位作者 Junjun Tan Xiaoxuan Zheng Shuji Ye 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第5期738-746,I0001-I0003,I0011,共13页
Determination of molecular structures of organicinorganic hybrid perovskite(OIHP)nanocrystals at the single-nanocrystal and ensemble levels is essential to understanding the mechanisms responsible for their size-depen... Determination of molecular structures of organicinorganic hybrid perovskite(OIHP)nanocrystals at the single-nanocrystal and ensemble levels is essential to understanding the mechanisms responsible for their size-dependent optoelectronic properties and the nanocrystal assembling process,but its detection is still a bit challenging.In this study,we demonstrate that femtosecond sum frequency generation(SFG)vibrational spectroscopy can provide a highly sensitive tool for probing the molecular structures of nanocrystals with a size comparable to the Bohr diameter(∼10 nm)at the single-nanocrystal level.The SFG signals are monitored using the spectral features of the phenyl group in(RMBA)PbBr_(3) and(R-MBA)_(2)PbI_(4) nanocrystals(MBA:methyl-benzyl-ammonium).It is found that the SFG spectra exhibit a strong resonant peak at 3067±3 cm^(−1)(ν2 mode)and a weak shoulder peak at 3045±4 cm^(−1)(ν_(7a) mode)at the ensemble level,whereas a peak of theν2 mode and a peak at 3025±3 cm^(−1)(ν20b mode)at the single-nanocrystal level.The nanocrystals at the single-nanocrystal level tend to lie down on the surface,but stand up as the ensemble number and the averaged sizes increase.This finding may provide valuable information on the structural origins for size-dependent photo-physical properties and photoluminescence blinking dynamics in nanocrystals. 展开更多
关键词 PEROVSKITE Single nanocrystal Sum frequency generation vibrational spectroscopy Size-dependent property
下载PDF
Atomic Simulation of Structure and Deformation's Influence on the Mechanical Properties of Single-walled Carbon Nanotubes
17
作者 Xiang-gui Ni Yu Wang +1 位作者 Zhong Zhang Xiu-xi Wang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第4期294-300,共7页
Tensile deformation behaviors and the Poisson's ratio of single-walled carbon nanotubes (SWCNTs) are numerically studied, using the molecular dynamics (MD) inethod. Effects of several structural features of cryst... Tensile deformation behaviors and the Poisson's ratio of single-walled carbon nanotubes (SWCNTs) are numerically studied, using the molecular dynamics (MD) inethod. Effects of several structural features of crystal cells of SWCNTs, i.e., the size, chirality and strain, on their mechanical properties are analyzed systematically. The simulations indicate that Armchair SWCNTs (8, 8)-(22, 22) and Zigzag SWCNTs (9,0)- (29,0) can be stretched by 35%-38% and 20%-27% without sign of plasticity, respectively. The Young's modulus of SWCNTs under tension ranges from 960 GPa to 750 GPa as their radii increase. The Young's modulus of zigzag SWCNTs is higher than that of armchair SWCNTs. Additionally, three SWCNTs (9,9), (12,6) and (16,0) are investigated to obtain their Poisson's ratio under tensile and compressive loading. The results show that the Poisson's ratio of nanotubes decreases generally as the strain increases. Under the same tensile strain, the Poisson's ratio decreases as the chiral angles of SWCNTs decrease, while their Polsson's ratios increase under the same compressive strain. 展开更多
关键词 Single-walled carbon nanotube Chiral dependence Size dependence Strain dependence Poisson's ratio
下载PDF
Advances in polymer-stabilized Au nano-cluster catalysis : Interplay of theoretical calculations and experiments
18
作者 Hiroaki Koga Yoshinori Ato +2 位作者 Akihide Hayashi Kohei Tada Mitsutaka Okumura 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第10期1588-1593,共6页
Polymer‐stabilized Au nano clusters (NCs) with mean diameters of 2–10 nm exhibit unique catalytic properties. Several studies have shown that the key factors affecting the catalytic activity of poly‐mer‐stabiliz... Polymer‐stabilized Au nano clusters (NCs) with mean diameters of 2–10 nm exhibit unique catalytic properties. Several studies have shown that the key factors affecting the catalytic activity of poly‐mer‐stabilized Au NCs are control of the Au NC size, appropriate selection of polymers and optimi‐zation of the reaction conditions. This is because polymer‐stabilized Au NCs exhibit a clear size effect in several catalytic reactions, and the catalytic activity differs with the type of polymer used and the reaction conditions. In order to elucidate the reason underlying the catalytic activity of the polymer‐stabilized Au NCs, much attention is being devoted to the interplay of theoretical calcula‐tions and experiments in catalysis by polymer stabilized Au NCs. The present article mainly summa‐rizes our progress in understanding this interplay in polymer‐stabilized Au NC catalysis. 展开更多
关键词 Polymer-stabilized Au nano-clusterAerobic oxidation of alcoholsInterplay of theoretical calculations and experimentsSize effect ofAu nano-clusterRole of the polymers
下载PDF
Si_3N_4/Ni nanocomposite formed by electroplating: Effect of average size of nanoparticulates 被引量:2
19
作者 M.A.KHAZRAYIE A.R.S.AGHDAM 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第6期1017-1023,共7页
Properties of Si3N4/Ni electroplated nanocomposite such as corrosion current density after long time immersion,roughness of obtained layer and distribution of nanometric particulates were studied.Other effective facto... Properties of Si3N4/Ni electroplated nanocomposite such as corrosion current density after long time immersion,roughness of obtained layer and distribution of nanometric particulates were studied.Other effective factors for fabrication of nanocomposite coatings were fixed for better studying the effect of the average size of nanoparticulates.The effects of the different average size of nanometric particulates(ASNP)from submicron scale(less than 1μm)to nanometric scale(less than 10 nm)were studied.The nanostructures of surfaces were examined by scanning electron microscopy(SEM),transmission electron microscopy(TEM)and atomic force microscopy(AFM).Corrosion rates of the coatings were determined using the Tafel polarization test.It is seen that decreasing the ASNP will lead to lower corrosion current densities;however,in some cases,pitting phenomena are observed.The roughness illustrates a minimum level while the distribution of nanometric particulates is more uniform by decreasing the ASNP.The effects of pulsed current on electrodeposition(frequency,duty cycle)and concentration of nanoparticulates in electrodeposition bath on trend of obtained curves have been discussed.Response surface methodology was applied for optimizing the effective operating conditions of coatings.The levels studied were frequency range between 1 000 and 9 000 Hz,duty cycle between 10%and 90%and concentration of nanoparticulates of 10-90 g/L. 展开更多
关键词 corrosion ELECTRODEPOSITION NANOCOMPOSITE NANOSTRUCTURE nano diamond
下载PDF
Size-controlled Pd Nanoparticles Supported on α-Al_2O_3 as Heterogeneous Catalyst for Selective Hydrogenation of Acetylene 被引量:1
20
作者 张火利 杨元一 +3 位作者 戴伟 鲁树亮 于海波 吉媛媛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第5期516-521,共6页
Size-controlled Pd nanoparticles (PdNPs) were synthesized in aqueous solution, using sodium car-boxymethyl cellulose as the stabilizer. Size-controlled PdNPs were supported onα-Al2O3 by the incipient wetness impreg... Size-controlled Pd nanoparticles (PdNPs) were synthesized in aqueous solution, using sodium car-boxymethyl cellulose as the stabilizer. Size-controlled PdNPs were supported onα-Al2O3 by the incipient wetness impregnation method. The PdNPs onα-Al2O3 support were in a narrow particle size distribution in the range of 1-6 nm. A series of PdNPs/α-Al2O3 catalysts were used for the selective hydrogenation of acetylene in ethylene-rich stream. The results show that PdNPs/α-Al2O3 catalyst with 0.03%(by mass) Pd loading is a very effective and sta-ble catalyst. With promoter Ag added, ethylene selectivity is increased from 41.0%to 63.8%at 100 &#176;C. Comparing with conventional Pd-Ag/α-Al2O3 catalyst, PdNPs-Ag/α-Al2O3 catalyst has better catalytic performance in acety-lene hydrogenation and shows good prospects for industrial application. 展开更多
关键词 Pd nanoparticles sodium carboxymethyl cellulose acetylene hydrogenation
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部