A bundle adjustment method of remote sensing images based on dual quaternion is presented,which conducted the uniform disposal corresponding location and attitude of sequence images by the dual quaternion.The constrai...A bundle adjustment method of remote sensing images based on dual quaternion is presented,which conducted the uniform disposal corresponding location and attitude of sequence images by the dual quaternion.The constraint relationship of image itself and sequence images is constructed to compensate the systematic errors.The feasibility of this method used in bundle adjustment is theoretically tested by the analysis of the structural characteristics of error equation and normal equation based on dual quaternion.Different distributions of control points and stepwise regression analysis are introduced into the experiment for RC30 image.The results show that the adjustment accuracy can achieve 0.2min plane and 1min elevation.As a result,this method provides a new technique for geometric location problem of remote sensing images.展开更多
We consider the problem of restoring images corrupted by Poisson noise. Under the framework of maximum a posteriori estimator, the problem can be converted into a minimization problem where the objective function is c...We consider the problem of restoring images corrupted by Poisson noise. Under the framework of maximum a posteriori estimator, the problem can be converted into a minimization problem where the objective function is composed of a Kullback-Leibler(KL)-divergence term for the Poisson noise and a total variation(TV) regularization term. Due to the logarithm function in the KL-divergence term, the non-differentiability of TV term and the positivity constraint on the images, it is not easy to design stable and efficiency algorithm for the problem. Recently, many researchers proposed to solve the problem by alternating direction method of multipliers(ADMM). Since the approach introduces some auxiliary variables and requires the solution of some linear systems, the iterative procedure can be complicated. Here we formulate the problem as two new constrained minimax problems and solve them by Chambolle-Pock's first order primal-dual approach. The convergence of our approach is guaranteed by their theory. Comparing with ADMM approaches, our approach requires about half of the auxiliary variables and is matrix-inversion free. Numerical results show that our proposed algorithms are efficient and outperform the ADMM approach.展开更多
The Lee weight enumerators and the complete weight enumerators for the linear codes over ring R = F2 + u F2 + v F2 are defined and Gray map from R^nto F2^3n is constructed. By proving the fact that the Gray images o...The Lee weight enumerators and the complete weight enumerators for the linear codes over ring R = F2 + u F2 + v F2 are defined and Gray map from R^nto F2^3n is constructed. By proving the fact that the Gray images of the self-dual codes over R are the self-dual codes over F2, and based on the Mac Williams identities for the Hamming weight enumerators of linear codes over F2, the Mac Williams identities for Lee weight enumerators of linear codes over R are given. Further, by introducing a special variable t, the Mac Williams identities for the complete weight enumerators of linear codes over R are obtained. Finally, an example which illustrates the correctness and function of the two Mac Williams identities is provided.展开更多
基金supported by the National Natural Science Foundations of China (Nos.41101441,60974107, 41471381)the Foundation of Graduate Innovation Center in NUAA(No.kfjj130133)
文摘A bundle adjustment method of remote sensing images based on dual quaternion is presented,which conducted the uniform disposal corresponding location and attitude of sequence images by the dual quaternion.The constraint relationship of image itself and sequence images is constructed to compensate the systematic errors.The feasibility of this method used in bundle adjustment is theoretically tested by the analysis of the structural characteristics of error equation and normal equation based on dual quaternion.Different distributions of control points and stepwise regression analysis are introduced into the experiment for RC30 image.The results show that the adjustment accuracy can achieve 0.2min plane and 1min elevation.As a result,this method provides a new technique for geometric location problem of remote sensing images.
基金supported by National Natural Science Foundation of China(Grant Nos.1136103011271049 and 11271049)+5 种基金the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese ScholarsState Education Ministry(Grant Nos.CUHK400412HKBU502814211911and 12302714)Hong Kong Research Grants Council(Grant No.Ao E/M-05/12)FRGs of Hong Kong Baptist University
文摘We consider the problem of restoring images corrupted by Poisson noise. Under the framework of maximum a posteriori estimator, the problem can be converted into a minimization problem where the objective function is composed of a Kullback-Leibler(KL)-divergence term for the Poisson noise and a total variation(TV) regularization term. Due to the logarithm function in the KL-divergence term, the non-differentiability of TV term and the positivity constraint on the images, it is not easy to design stable and efficiency algorithm for the problem. Recently, many researchers proposed to solve the problem by alternating direction method of multipliers(ADMM). Since the approach introduces some auxiliary variables and requires the solution of some linear systems, the iterative procedure can be complicated. Here we formulate the problem as two new constrained minimax problems and solve them by Chambolle-Pock's first order primal-dual approach. The convergence of our approach is guaranteed by their theory. Comparing with ADMM approaches, our approach requires about half of the auxiliary variables and is matrix-inversion free. Numerical results show that our proposed algorithms are efficient and outperform the ADMM approach.
基金supported by the Natural Science Foundation of Hubei Province under Grant No.D20144401the Natural Science Foundation of Hubei Polytechnic University under Grant Nos.12xjz14A,11yjz37B
文摘The Lee weight enumerators and the complete weight enumerators for the linear codes over ring R = F2 + u F2 + v F2 are defined and Gray map from R^nto F2^3n is constructed. By proving the fact that the Gray images of the self-dual codes over R are the self-dual codes over F2, and based on the Mac Williams identities for the Hamming weight enumerators of linear codes over F2, the Mac Williams identities for Lee weight enumerators of linear codes over R are given. Further, by introducing a special variable t, the Mac Williams identities for the complete weight enumerators of linear codes over R are obtained. Finally, an example which illustrates the correctness and function of the two Mac Williams identities is provided.