期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
关于Z-空间的对偶空间的讨论
1
作者 周国立 《数学理论与应用》 2006年第3期19-21,共3页
本文以自然的方式定义了从Z-空间X到Z-空间Y的有界线性算子的和以及它们的数乘.从而得到了与赋范空间的对偶空间理论类似的一系列结论.
关键词 Z-空间 有界线性算子 对偶空间定理
下载PDF
THE REALIZATION OF MULTIPLIER HILBERT BIMODULE ON BIDUAL SPACE AND TIETZE EXTENSION THEOREM 被引量:1
2
作者 FANG XIAOCHUN(Department of Mathematics, Tongji University, Shanghai 200092, China) E-mail: xfang@online.sh.cn 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2000年第3期375-380,共6页
The multiplier bimodule of Hilbert bimodule is introduced in a way similar to [1], and its realization on a quotient of bidual space and Tietze extension theorem are obtained similar to that in C-algebra case. As a re... The multiplier bimodule of Hilbert bimodule is introduced in a way similar to [1], and its realization on a quotient of bidual space and Tietze extension theorem are obtained similar to that in C-algebra case. As a result, the multiplier bimodule here is also a Hilbert bimodule. 展开更多
关键词 Realization on bidual space Multiplier Hilbert bimodule Tietze extension theorem
原文传递
The Presentation Problem of the Conjugate Cone of the Hardy Space Hp(0 < p≤1) 被引量:6
3
作者 Jianyong WANG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2013年第4期541-556,共16页
The Hardy space Hpis not locally convex if 0 < p < 1, even though its conjugate space(Hp) separates the points of Hp. But then it is locally p-convex, and its conjugate cone(Hp) p is large enough to separate the... The Hardy space Hpis not locally convex if 0 < p < 1, even though its conjugate space(Hp) separates the points of Hp. But then it is locally p-convex, and its conjugate cone(Hp) p is large enough to separate the points of Hp. In this case, the conjugate cone can be used to replace its conjugate space to set up the duality theory in the p-convex analysis. This paper deals with the representation problem of the conjugate cone(Hp) p of Hpfor 0 < p ≤ 1, and obtains the subrepresentation theorem(Hp) p L∞(T, C p). 展开更多
关键词 Locally p-convex space Hardy space Normed conjugate cone Shadowcone Subrepresentation theorem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部