A self-developed forced convection rheoforming (FCR) machine for the preparation of light alloy semisolid slurry was introduced. The microstructure characteristics of 7075 aluminium alloy semisolid slurry at differe...A self-developed forced convection rheoforming (FCR) machine for the preparation of light alloy semisolid slurry was introduced. The microstructure characteristics of 7075 aluminium alloy semisolid slurry at different stirring speeds prepared by the FCR process were analyzed. The experimental results suggest that with the increase of the stirring speed, the mean grain size of the semisolid decreases and the shape factor as well as the number of primary grains increase. Meanwhile, the preparation process of semisolid slurry was numerically simulated. The flow characteristics of the melt in the device and the effect of the stirring speed on temperature field and solid fraction of the melt were investigated. The simulated results show that during the preparation process of semisolid slurry, there is a complex convection within the FCR device that obviously changes the temperature field distribution and solid fraction of the melt. When the convection intensity increases, the scope of the undercooling gradient of the melt is reduced and temperature distribution is improved.展开更多
In this paper,we study all the possible bordism classes for a smooth involution on a smooth closed manifold whose fixed point set is RP(1)∪P(m,n),m>0,n>0.
This research work numerically analyzes 2D,steady state,mixed convective heat transfer for Newtonian fluids in lid driven square enclosure with centered triangular block(blockage—10%or 30%)maintained either at the ...This research work numerically analyzes 2D,steady state,mixed convective heat transfer for Newtonian fluids in lid driven square enclosure with centered triangular block(blockage—10%or 30%)maintained either at the constant wall temperature or constant heat flux thermal conditions.The fluid flow in the enclosure is initiated by top moving wall in+x-direction,while all other walls are stationary.The top and bottom walls are thermally insulated.In particular,the governing field equations are solved for range of governing parameters such as,Reynolds number(1–1000),Prandtl number(1–100),and Grashof number展开更多
The influence of casting parameters on stray grain formation of a unidirectionally solidified superalloy IN738LC casting with three platforms was investigated by using a 3D cellular automaton-finite element (CAFE) m...The influence of casting parameters on stray grain formation of a unidirectionally solidified superalloy IN738LC casting with three platforms was investigated by using a 3D cellular automaton-finite element (CAFE) model in CALCOSOFT package. The model was first validated by comparison of the reported grain structure of AI-7%Si (mass fraction) alloy. Then, the influence of pouring temperature, heat flux of the lateral surface, convection heat coefficient of the cooled chill and mean undercooling of the bulk nucleation on the stray grain formation was studied during the unidirectional solidification. The predictions show that the stray grain formation is obviously sensitive to the pouring temperature, heat flux and mean undercooling of the bulk nucleation. However, increasing the heat convection coefficient has little influence on the stray grain formation.展开更多
The effect of friction factor on the unsteady state mixed convective-radiative heat transfer in an inclined cylindrical annulus is investigated from continuity, momentum and energy equations. The outer cylinder is kep...The effect of friction factor on the unsteady state mixed convective-radiative heat transfer in an inclined cylindrical annulus is investigated from continuity, momentum and energy equations. The outer cylinder is kept at a constant temperature while the inner cylinder is heated with constant heat flux. The governing equations are normalized and solved using the vorticity-stream function and the BFC (body fitted coordinates) methods. The two heat transfer mechanisms of convection and radiation are treated independently and simultaneously. A computer program (Fortran 90) was built to calculate Nusselt number (Nu) and friction factorffor unsteady state condition for fluid Prandtl number fixed at (Pr = 0.7) (for air as working fluid) with radius ratio (/~ = 2.6), Rayleigh number (0 〈 Ra 〈 103), Reynolds number (50 〈 Re 〈 2,000), conduction-radiation parameter (0 〈 N 〈 10), optical thickness (0 〈 l" 〈 10) and different annulus inclination with horizontal plane (0~ _〈 d 〈 90~) for concentric cylindrical annulus. For the range of parameters considered, results show that radiation enhance heat transfer. It is also indicated in the results that as 3 increasefwill be decrease and also when Re increasefwill be decrease for any value of Ra causing increase in heat transfer. The maximum value off can be recognized at ~ = 90~ and the minimum value at 6 = 0~ for low Re. There is an optimum value of annulus inclination that gives maximum value of Nu, this maximum value appears at 90~ of annulus inclination comparison of the result with the previous work shows a good agreement.展开更多
This research is concerned with the mathematical modeling and analysis of blood flow in a tapered artery with stenosis. The analysis has been carried out in the presence of heat and mass transfer. Constitutive equatio...This research is concerned with the mathematical modeling and analysis of blood flow in a tapered artery with stenosis. The analysis has been carried out in the presence of heat and mass transfer. Constitutive equation of Carreau fluid has been invoked in the mathematical formulation. The representation of blood flow is considered through an axially non-symmetrical but radially symmetric stenosis. Symmetry of the distribution of the wall, shearing stress and resistive impectartce and their growth with the developirtg stenosis is given due attention. Solutions have been obtained for the velocity, temperature, concentration, resistance impedance, wall shear stress and shearing stress at the stenosis throat. Graphical illustrations associated with the tapered arteries namely converging, diverging and non-tapered arteries are examined for different parameters of interest. Streamlines have been plotted and discussed.展开更多
基金Project (2011CB606302-1) supported by the National Basic Research Program of ChinaProject (2013AA031001) supported by Hi-Tech Research and Development Program of China
文摘A self-developed forced convection rheoforming (FCR) machine for the preparation of light alloy semisolid slurry was introduced. The microstructure characteristics of 7075 aluminium alloy semisolid slurry at different stirring speeds prepared by the FCR process were analyzed. The experimental results suggest that with the increase of the stirring speed, the mean grain size of the semisolid decreases and the shape factor as well as the number of primary grains increase. Meanwhile, the preparation process of semisolid slurry was numerically simulated. The flow characteristics of the melt in the device and the effect of the stirring speed on temperature field and solid fraction of the melt were investigated. The simulated results show that during the preparation process of semisolid slurry, there is a complex convection within the FCR device that obviously changes the temperature field distribution and solid fraction of the melt. When the convection intensity increases, the scope of the undercooling gradient of the melt is reduced and temperature distribution is improved.
文摘In this paper,we study all the possible bordism classes for a smooth involution on a smooth closed manifold whose fixed point set is RP(1)∪P(m,n),m>0,n>0.
文摘This research work numerically analyzes 2D,steady state,mixed convective heat transfer for Newtonian fluids in lid driven square enclosure with centered triangular block(blockage—10%or 30%)maintained either at the constant wall temperature or constant heat flux thermal conditions.The fluid flow in the enclosure is initiated by top moving wall in+x-direction,while all other walls are stationary.The top and bottom walls are thermally insulated.In particular,the governing field equations are solved for range of governing parameters such as,Reynolds number(1–1000),Prandtl number(1–100),and Grashof number
基金Project(08BZ1130100) supported by the Science and Technology Committee of Shanghai,ChinaProject(SHUCX102251) supported by the Innovation Fund for Graduate Student of Shanghai University,China
文摘The influence of casting parameters on stray grain formation of a unidirectionally solidified superalloy IN738LC casting with three platforms was investigated by using a 3D cellular automaton-finite element (CAFE) model in CALCOSOFT package. The model was first validated by comparison of the reported grain structure of AI-7%Si (mass fraction) alloy. Then, the influence of pouring temperature, heat flux of the lateral surface, convection heat coefficient of the cooled chill and mean undercooling of the bulk nucleation on the stray grain formation was studied during the unidirectional solidification. The predictions show that the stray grain formation is obviously sensitive to the pouring temperature, heat flux and mean undercooling of the bulk nucleation. However, increasing the heat convection coefficient has little influence on the stray grain formation.
文摘The effect of friction factor on the unsteady state mixed convective-radiative heat transfer in an inclined cylindrical annulus is investigated from continuity, momentum and energy equations. The outer cylinder is kept at a constant temperature while the inner cylinder is heated with constant heat flux. The governing equations are normalized and solved using the vorticity-stream function and the BFC (body fitted coordinates) methods. The two heat transfer mechanisms of convection and radiation are treated independently and simultaneously. A computer program (Fortran 90) was built to calculate Nusselt number (Nu) and friction factorffor unsteady state condition for fluid Prandtl number fixed at (Pr = 0.7) (for air as working fluid) with radius ratio (/~ = 2.6), Rayleigh number (0 〈 Ra 〈 103), Reynolds number (50 〈 Re 〈 2,000), conduction-radiation parameter (0 〈 N 〈 10), optical thickness (0 〈 l" 〈 10) and different annulus inclination with horizontal plane (0~ _〈 d 〈 90~) for concentric cylindrical annulus. For the range of parameters considered, results show that radiation enhance heat transfer. It is also indicated in the results that as 3 increasefwill be decrease and also when Re increasefwill be decrease for any value of Ra causing increase in heat transfer. The maximum value off can be recognized at ~ = 90~ and the minimum value at 6 = 0~ for low Re. There is an optimum value of annulus inclination that gives maximum value of Nu, this maximum value appears at 90~ of annulus inclination comparison of the result with the previous work shows a good agreement.
文摘This research is concerned with the mathematical modeling and analysis of blood flow in a tapered artery with stenosis. The analysis has been carried out in the presence of heat and mass transfer. Constitutive equation of Carreau fluid has been invoked in the mathematical formulation. The representation of blood flow is considered through an axially non-symmetrical but radially symmetric stenosis. Symmetry of the distribution of the wall, shearing stress and resistive impectartce and their growth with the developirtg stenosis is given due attention. Solutions have been obtained for the velocity, temperature, concentration, resistance impedance, wall shear stress and shearing stress at the stenosis throat. Graphical illustrations associated with the tapered arteries namely converging, diverging and non-tapered arteries are examined for different parameters of interest. Streamlines have been plotted and discussed.