For over twenty years, Obuasi Municipality, Ghana, has experienced land-cover change arising from gold mining and urbanisation. This project quantified the land-cover changes that have taken place and projected likely...For over twenty years, Obuasi Municipality, Ghana, has experienced land-cover change arising from gold mining and urbanisation. This project quantified the land-cover changes that have taken place and projected likely future land-cover. An integration of EO (earth observation), GIS (geographical information science) and Stochastic Modelling was examined. Post-classification Change Detection employed Landsat TM or ETM+ images in 1986, 2002 and 2008. Subsequently, Markov Chain Analysis projected the land-cover distribution for 2020. Seven broad land-use and land-cover classes were identified and mapped, namely: built-up areas, mine sites tailing ponds barren land forestland farmland and rangeland. The results obtained for the 2008 to 2020 projection revealed a continuous expansion of built-up areas (1.63%), mine sites (0.89%) and farmland (3.4%), and a reduction of forestland (4.17%) and rangeland (2.59%). Despite the advent of very high resolution satellite imagery, this use of EO and GIS technology focussed on low-cost and lower resolution satellite imagery, coupled with Markov Modelling and was found to be beneficial in describing and analysing land-cover change processes in the study area, and was hence potentially useful for strategic planning purposes.展开更多
High resolution remote sensing data has been applied in many fields such as national security, economic construction and in the daily life of the general public around the world, creating a huge market. Commercial rem...High resolution remote sensing data has been applied in many fields such as national security, economic construction and in the daily life of the general public around the world, creating a huge market. Commercial remote sensing cameras have been developed vigorously throughout the world over the last few decades, resulting in resolutions down to 0.31 m. In 2010, the Chinese government approved the implementation of the China High-resolution Earth Observation System(CHEOS) Major Special Project, giving priority to development of high resolution remote sensing satellites. More than half of CHEOS has been constructed to date and 5 satellites operate in orbit. These cameras have different characteristics. A number of innovative technologies have been adopted, which have led to camera performance increasing in leaps and bounds. The products and the production capability enables the remote sensing technical level to increase making it on a par with Europe and the US.展开更多
The first images obtained from Gaofen-3(GF-3),China’s first C-band high-resolution Synthetic Aperture Radar(SAR)satellite with a resolution of one meter in spatial diameter were published on August 25.This satell...The first images obtained from Gaofen-3(GF-3),China’s first C-band high-resolution Synthetic Aperture Radar(SAR)satellite with a resolution of one meter in spatial diameter were published on August 25.This satellite undertakes an important task with its all-day,all-weather observation capability as part of the China High-resolution Earth Observation System(CHEOS).With 12 imaging modes,展开更多
文摘For over twenty years, Obuasi Municipality, Ghana, has experienced land-cover change arising from gold mining and urbanisation. This project quantified the land-cover changes that have taken place and projected likely future land-cover. An integration of EO (earth observation), GIS (geographical information science) and Stochastic Modelling was examined. Post-classification Change Detection employed Landsat TM or ETM+ images in 1986, 2002 and 2008. Subsequently, Markov Chain Analysis projected the land-cover distribution for 2020. Seven broad land-use and land-cover classes were identified and mapped, namely: built-up areas, mine sites tailing ponds barren land forestland farmland and rangeland. The results obtained for the 2008 to 2020 projection revealed a continuous expansion of built-up areas (1.63%), mine sites (0.89%) and farmland (3.4%), and a reduction of forestland (4.17%) and rangeland (2.59%). Despite the advent of very high resolution satellite imagery, this use of EO and GIS technology focussed on low-cost and lower resolution satellite imagery, coupled with Markov Modelling and was found to be beneficial in describing and analysing land-cover change processes in the study area, and was hence potentially useful for strategic planning purposes.
文摘High resolution remote sensing data has been applied in many fields such as national security, economic construction and in the daily life of the general public around the world, creating a huge market. Commercial remote sensing cameras have been developed vigorously throughout the world over the last few decades, resulting in resolutions down to 0.31 m. In 2010, the Chinese government approved the implementation of the China High-resolution Earth Observation System(CHEOS) Major Special Project, giving priority to development of high resolution remote sensing satellites. More than half of CHEOS has been constructed to date and 5 satellites operate in orbit. These cameras have different characteristics. A number of innovative technologies have been adopted, which have led to camera performance increasing in leaps and bounds. The products and the production capability enables the remote sensing technical level to increase making it on a par with Europe and the US.
文摘The first images obtained from Gaofen-3(GF-3),China’s first C-band high-resolution Synthetic Aperture Radar(SAR)satellite with a resolution of one meter in spatial diameter were published on August 25.This satellite undertakes an important task with its all-day,all-weather observation capability as part of the China High-resolution Earth Observation System(CHEOS).With 12 imaging modes,