An invariant function (IF) is defined as a multiplier of a symmetry that means a symmetry multiplied by an IF is still a symmetry. Primary branch solutions of arbitrary first order scalar systems can be obtained by ...An invariant function (IF) is defined as a multiplier of a symmetry that means a symmetry multiplied by an IF is still a symmetry. Primary branch solutions of arbitrary first order scalar systems can be obtained by means of the IF and its related symmetry approach. Especially, one recursion operator and some sets of infinitely many high order symmetries are also explicitly given for arbitrary (l q-1)-dimensional first order autonomous systems. Because of the intrusion of the arbitrary function, various implicit special exact solutions can be found by fixing the arbitrary functions and selecting different seed solutions.展开更多
基金Supported by the National Natural Science Foundations of China under Grant Nos.11435005,11471004,11175092,and 11205092Shanghai Knowledge Service Platform for Trustworthy Internet of Things No.ZF1213K.C.Wong Magna Fund in Ningbo University
文摘An invariant function (IF) is defined as a multiplier of a symmetry that means a symmetry multiplied by an IF is still a symmetry. Primary branch solutions of arbitrary first order scalar systems can be obtained by means of the IF and its related symmetry approach. Especially, one recursion operator and some sets of infinitely many high order symmetries are also explicitly given for arbitrary (l q-1)-dimensional first order autonomous systems. Because of the intrusion of the arbitrary function, various implicit special exact solutions can be found by fixing the arbitrary functions and selecting different seed solutions.