期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
基于样本自适应条件对抗网络的齿轮箱跨域故障诊断研究
1
作者 赵敏 范永胜 +1 位作者 邓艾东 邓敏强 《噪声与振动控制》 CSCD 北大核心 2024年第5期166-171,共6页
基于对抗训练的深度领域适应在旋转部件跨域故障诊断中应用效果良好。然而,现有研究主要致力于降低边缘分布差异而忽略对类别分布信息的挖掘,导致其在复杂场景下诊断准确性不足。针对该问题,提出一种样本自适应条件对抗网络,通过分解抽... 基于对抗训练的深度领域适应在旋转部件跨域故障诊断中应用效果良好。然而,现有研究主要致力于降低边缘分布差异而忽略对类别分布信息的挖掘,导致其在复杂场景下诊断准确性不足。针对该问题,提出一种样本自适应条件对抗网络,通过分解抽象特征和评估样本置信度挖掘类别分布特征,增强对抗训练的域适配能力,从而有效提高跨域诊断性能。通过齿轮箱故障诊断实验验证所提方法在实际应用中的有效性和优越性。 展开更多
关键词 故障诊断 深度领域适应 对抗训练 条件对抗网络 齿轮箱
下载PDF
一种基于领域自适应的智能合约安全分析框架
2
作者 王娜 朱会娟 +1 位作者 宋香梅 冯霞 《应用科学学报》 CAS CSCD 北大核心 2024年第4期585-597,共13页
现有智能合约漏洞检测方案很大程度上依赖于缜密的专家规则或先验知识,不仅缺乏灵活性且难以应对新型未知漏洞检测,为此提出一种基于领域自适应的智能合约安全分析框架(domain adaptive security analysis framework,DASAF)。首先,在DA... 现有智能合约漏洞检测方案很大程度上依赖于缜密的专家规则或先验知识,不仅缺乏灵活性且难以应对新型未知漏洞检测,为此提出一种基于领域自适应的智能合约安全分析框架(domain adaptive security analysis framework,DASAF)。首先,在DASAF中,智能合约操作码执行逻辑被获取并被转化为序列特征。其次,为了解决深度学习模型中固有的数据偏移现象引起的模型老化,以及新型未知漏洞有标签样本不足导致的难以获得强泛化性能的问题,在DASAF中引入了生成对抗网络结构和领域自适应技术。最后,在一个公开基准数据集上详细评估了DASAF在智能合约漏洞分析领域的有效性,并与同类方案进行了对比,实验结果表明,本文提出的DASAF优于同类方案。 展开更多
关键词 智能合约 领域自适应技术 生成对抗网络 漏洞检测 深度学习
下载PDF
基于边缘领域自适应的立体匹配算法
3
作者 厉行 樊养余 +2 位作者 郭哲 段昱 刘诗雅 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第7期2970-2980,共11页
风格迁移方法因其较好的域适应性,广泛应用于存在领域差异的计算机视觉领域。当前基于风格迁移的立体匹配任务存在如下挑战:(1)转换后的左右图像需满足配对的前提;(2)转换后图像的内容和空间信息要与原始图像保持一致。针对以上难点,该... 风格迁移方法因其较好的域适应性,广泛应用于存在领域差异的计算机视觉领域。当前基于风格迁移的立体匹配任务存在如下挑战:(1)转换后的左右图像需满足配对的前提;(2)转换后图像的内容和空间信息要与原始图像保持一致。针对以上难点,该文提出一种基于边缘领域自适应的立体匹配方法(EDA-Stereo)。首先,构建了边缘引导的生成对抗网络(Edge-GAN),通过空间特征转换(SFT)层融合边缘信息和合成域图像特征,引导生成器输出保留合成域图像结构特征的伪图像。其次,提出翘曲损失函数以迫使基于转换后的右图像所重建出的左图像向原始左图像进行逼近,防止转换后的左右图像对不匹配。最后,提出基于法线损失的立体匹配网络,通过表征局部深度变化来捕获更多的几何细节,有效提高了匹配精度。通过在合成数据集上训练,在真实数据集上与多种方法进行比较,结果表明本该方法能够有效缓解领域差异,在KITTI 2012和KITTI 2015数据集上的D1误差分别为3.9%和4.8%,比当前先进的域不变立体匹配网络(DSM-Net)方法分别相对降低了37%和26%。 展开更多
关键词 立体匹配 领域自适应 边缘引导 生成对抗网络
下载PDF
基于特征校正的多对抗域适应方法
4
作者 张永 刘昊双 +1 位作者 章琪 刘文哲 《电信科学》 北大核心 2024年第1期71-82,共12页
领域自适应可以通过对齐源域和目标域的分布将有标签的源域信息迁移到没有标签但相关的目标域。然而,现有的大多数方法仅对源域和目标域的低层特征分布进行对齐,无法捕获样本中的细粒度信息。基于此,提出了一种基于特征校正的多对抗域... 领域自适应可以通过对齐源域和目标域的分布将有标签的源域信息迁移到没有标签但相关的目标域。然而,现有的大多数方法仅对源域和目标域的低层特征分布进行对齐,无法捕获样本中的细粒度信息。基于此,提出了一种基于特征校正的多对抗域适应方法。该方法在引入注意力机制以突出可迁移区域的基础上,通过部署特征校正模块对齐两个域之间的高级特征分布,进一步缩小域差异。此外,为了避免单个分类器过度拟合其自身的噪声伪标签,还提出了双分类器协同训练,并利用图神经网络特征聚合的特性生成更精准的源域标签。在3个迁移学习基准数据集上的大量实验证明所提方法的有效性。 展开更多
关键词 领域自适应 迁移学习 对抗网络 注意力机制
下载PDF
基于样本加权条件对抗域适应网络的遥感影像作物分类
5
作者 丁伟 黄河 孙友强 《计算机应用与软件》 北大核心 2023年第10期199-204,336,共7页
针对遥感影像在时域上缺失或特征不对齐影响作物识别效果这一问题,在条件对抗域适应^([1])模型(CDAN)基础上提出一种基于可学习样本权重CDAN模型的作物分类方法。一方面,使用ResNet^([2])提出的并联卷积结构组成特征提取模块,对于低分... 针对遥感影像在时域上缺失或特征不对齐影响作物识别效果这一问题,在条件对抗域适应^([1])模型(CDAN)基础上提出一种基于可学习样本权重CDAN模型的作物分类方法。一方面,使用ResNet^([2])提出的并联卷积结构组成特征提取模块,对于低分辨率地块对象提取出丰富的特征;同时为解决困难样本给模型带来的负迁移问题,使用可学习的样本加权网络代替原模型直接使用熵计算的方式,来更好地度量样本的可迁移性。通过采集到的不同年份多月影像数据,在水稻分类任务上进行跨时域实验。结果表明,直接使用跨时域遥感影像进行预测会显著降低水稻分类精度,使用改进CDAN模型在多种迁移数据场景下的指标均有较大提升,最终分类精度达97%。 展开更多
关键词 领域自适应 对抗网络 无监督 遥感 面向对象
下载PDF
基于动态对抗适应网络的垃圾分类算法 被引量:1
6
作者 李涛 田天祎 孙福明 《中国科技论文》 CAS 北大核心 2023年第3期317-321,329,共6页
为了解决垃圾的自动分类问题,基于动态对抗适应网络,提出了一种融入空间注意力机制的垃圾图像分类算法。在训练迭代过程中,算法通过利用领域鉴别器与特征提取器的相互对抗,不断增强领域鉴别器的识别能力与特征提取器的迷惑能力,让模型... 为了解决垃圾的自动分类问题,基于动态对抗适应网络,提出了一种融入空间注意力机制的垃圾图像分类算法。在训练迭代过程中,算法通过利用领域鉴别器与特征提取器的相互对抗,不断增强领域鉴别器的识别能力与特征提取器的迷惑能力,让模型学习获得更多的领域不变量;并针对模型的参数进行不断优化更新,最终达到领域适应的目的。同时,将空间注意力模块融入领域对抗自适应中,使得网络更加关注与分类任务有关的关键区域,使模型能够定位到感兴趣的信息,并对无用信息进行抑制。在垃圾数据集上的实验结果表明,所提模型可以取得较好的分类效果,且优于对比算法。 展开更多
关键词 垃圾分类 领域适应 对抗适应网络 空间注意力机制 特征
下载PDF
基于生成对抗网络的无监督域适应分类模型 被引量:7
7
作者 王格格 郭涛 +1 位作者 余游 苏菡 《电子学报》 EI CAS CSCD 北大核心 2020年第6期1190-1197,共8页
生成适应模型利用生成对抗网络实现模型结构,并在领域适应学习上取得了突破.但其部分网络结构缺少信息交互,且仅使用对抗学习不足以完全减小域间距离,从而使分类精度受到影响.为此,提出一种基于生成对抗网络的无监督域适应分类模型(Unsu... 生成适应模型利用生成对抗网络实现模型结构,并在领域适应学习上取得了突破.但其部分网络结构缺少信息交互,且仅使用对抗学习不足以完全减小域间距离,从而使分类精度受到影响.为此,提出一种基于生成对抗网络的无监督域适应分类模型(Unsupervised Domain Adaptation classification model based on GAN,UDAG).该模型通过联合使用生成对抗网络和多核最大均值差异度量准则优化域间差异,并充分利用无监督对抗训练及监督分类训练之间的信息传递以学习源域分布和目标域分布之间的共享特征.通过在四种域适应情况下的实验结果表明,UDAG模型学习到更优的共享特征嵌入并实现了域适应图像分类,且分类精度有明显提高. 展开更多
关键词 生成适应模型 迁移学习 领域适应学习 生成对抗网络 多核最大均值差异 无监督学习
下载PDF
结合自注意力的对抗性领域适应图像分类方法 被引量:5
8
作者 陈诚 郭卫斌 李庆瑜 《计算机工程与科学》 CSCD 北大核心 2020年第2期259-265,共7页
作为解决数据集迁移和适应的系统性框架,领域适应在近年来发展迅速。在生成对抗网络出现以后,对抗性思想的引入为领域适应中的无监督适应问题带来了新的思路。通过研究生成对抗网络和领域适应的内在联系,类比生成对抗网络的改进方法,提... 作为解决数据集迁移和适应的系统性框架,领域适应在近年来发展迅速。在生成对抗网络出现以后,对抗性思想的引入为领域适应中的无监督适应问题带来了新的思路。通过研究生成对抗网络和领域适应的内在联系,类比生成对抗网络的改进方法,提出了结合自注意力模块的领域适应方法,用以弥补无法建模长距离依赖的缺陷。同时,考虑到生成对抗网络和领域适应任务上的不同,通过引入新的学习参数来改进自注意力模块,使其在分类任务上有更高的精度和健壮性。最后,在公开的领域适应数据集上的实验证实了本文方法的有效性和可行性。 展开更多
关键词 迁移学习 领域适应 图像分类 生成对抗网络
下载PDF
基于对抗学习的医学图像分割领域自适应研究 被引量:1
9
作者 王绍帆 马驰 +1 位作者 胡辉 路生亮 《计算机应用研究》 CSCD 北大核心 2022年第4期1270-1273,共4页
为了解决跨领域医学图像分析中不匹配的问题,提出了一种基于对抗学习的无监督领域自适应框架(UAL-DAF)。具体而言,该框架通过外观转移模块(ATM)和结合条件生成对抗网络的语义转移模块(STM)分别缩小了跨领域医学图像外观和语义层次的差... 为了解决跨领域医学图像分析中不匹配的问题,提出了一种基于对抗学习的无监督领域自适应框架(UAL-DAF)。具体而言,该框架通过外观转移模块(ATM)和结合条件生成对抗网络的语义转移模块(STM)分别缩小了跨领域医学图像外观和语义层次的差异。最后,在具有挑战性的医学图像分割实验中,结果显著优于已有方法。因此,该框架能够提取领域自适应知识的外观和语义层次信息,实现领域知识的协同融合。 展开更多
关键词 医学图像分割 无监督领域自适应 条件生成对抗网络 深度学习 领域知识的协同融合
下载PDF
基于改进领域对抗网络的瓷砖表面缺陷检测
10
作者 林行 陈新度 +1 位作者 吴磊 练洋奇 《电子测量技术》 北大核心 2022年第24期105-110,共6页
深度神经网络作为主流的表面缺陷检测方法之一,需要大量样本进行模型训练,而随着瓷砖产品多样化,同类型瓷砖缺陷样本有限。本文提出一种基于改进域对抗神经网络(MDANN)的瓷砖表面缺陷检测方法,参考传统的DANN结构,首先,在ImageNet公共... 深度神经网络作为主流的表面缺陷检测方法之一,需要大量样本进行模型训练,而随着瓷砖产品多样化,同类型瓷砖缺陷样本有限。本文提出一种基于改进域对抗神经网络(MDANN)的瓷砖表面缺陷检测方法,参考传统的DANN结构,首先,在ImageNet公共数据集上预训练保存网络参数,提高训练速度;然后,在原网络中加入瓶颈层,并利用最大均值差异指标优化领域分布差异,改善了原DANN网络筛选源域的能力,实现小样本瓷砖的缺陷检测。实验结果表明,MDANN对瓷砖表面缺陷的有效检出率达98.77%,相比于原DANN网络提高了3.53%,可快速适用于不同类型的瓷砖检测,泛化性好。 展开更多
关键词 瓷砖缺陷检测 深度学习 迁移学习 领域自适应神经网络(dann)
下载PDF
带有双判别器的对抗性领域适应图像分类算法
11
作者 许浩 郭卫斌 《计算机工程与科学》 CSCD 北大核心 2019年第9期1656-1661,共6页
生成对抗网络的出现将对抗学习的思想引入了机器学习的不同知识体系,带来了全新的发展。对抗性的领域适应算法利用一个共享特征提取器提取域不变表征,一个判别器进行辨别,双方通过对抗性的迭代更新方式达到最优解。在数据来源上,生成对... 生成对抗网络的出现将对抗学习的思想引入了机器学习的不同知识体系,带来了全新的发展。对抗性的领域适应算法利用一个共享特征提取器提取域不变表征,一个判别器进行辨别,双方通过对抗性的迭代更新方式达到最优解。在数据来源上,生成对抗网络和领域适应都有极其类似的2个域。在目标函数上,两者都试图追寻一致性。从理论和逻辑结构出发分析两者的内在相似性,尝试利用已成熟的生成对抗网络体系从更深层次进一步提升领域适应性能。通过类比,提出使用2个判别器解决已有对抗性领域适应算法中存在的"模式崩溃"问题,并使用伪标签进行结构上的完善。最后,在标准领域适应任务上的实验表明了本文算法的可行性和有效性。 展开更多
关键词 领域适应 迁移学习 图像分类 对抗网络
下载PDF
基于DCGAN和DANN网络的滚动轴承跨域故障诊断 被引量:14
12
作者 胡若晖 张敏 许文鑫 《振动与冲击》 EI CSCD 北大核心 2022年第6期21-29,共9页
实现滚动轴承智能故障诊断需要大量标签数据,但机械设备实际运行中因轴承故障无法提前收集充足振动信号,导致滚动轴承故障模式难以判断。为解决该问题,提出一种有效利用少量样本数据实现领域自适应的迁移学习模型。首先,通过深度生成式... 实现滚动轴承智能故障诊断需要大量标签数据,但机械设备实际运行中因轴承故障无法提前收集充足振动信号,导致滚动轴承故障模式难以判断。为解决该问题,提出一种有效利用少量样本数据实现领域自适应的迁移学习模型。首先,通过深度生成式对抗网络(deep convolutional generative adversarial networks,DCGAN)实现少量振动信号的模拟式扩充,生成信号保留了真实信号完整的高频和低频特征;其次,通过对抗领域自适应网络(domain-adversarial neural networks,DANN)将源域与目标域特征投射到同一特征空间,实现多领域特征提取与适配;最后,通过智能诊断网络完成变工况下未知标签滚动轴承健康状态的识别。试验结果表明,所提方法在可用样本较少时能准确有效实现滚动轴承跨域故障诊断,准确率均优于其他迁移学习对比模型。 展开更多
关键词 故障诊断 迁移学习 领域自适应 深度生成式对抗网络(DCGAN) 对抗领域自适应网络(dann)
下载PDF
多层面的分步领域适应图像分类算法 被引量:4
13
作者 许浩 李宗印 郭卫斌 《小型微型计算机系统》 CSCD 北大核心 2019年第9期1921-1925,共5页
解决领域偏移(domain shift)或数据集偏置(dataset bias)问题通常侧重于去发现源领域和目标领域之间的域不变表征.尽管这种做法到目前为止已经取得了有效的进展,但是其受限于特征层面的学习,使之无法充分利用已有的信息,极大约束了领域... 解决领域偏移(domain shift)或数据集偏置(dataset bias)问题通常侧重于去发现源领域和目标领域之间的域不变表征.尽管这种做法到目前为止已经取得了有效的进展,但是其受限于特征层面的学习,使之无法充分利用已有的信息,极大约束了领域适应任务.为了有所改进,本文着眼于更加困难的无监督领域适应图像分类研究,提出了多层面的分步领域适应方法.该方法将不同层面取得的成果进行划分,并将算法流程细分为多步,对数据进行分步处理,保证了最大化数据利用率和具备高度的可扩展性.此外,在标签层面,本文巧妙地将目标领域中的样本分为易适应和难适应两类,并结合领域对抗损失(domain-adversarial loss)进行再次处理.模型的实现基于一个已有的代表性算法,在标准领域适应任务上的实验达到了预期效果. 展开更多
关键词 领域适应 迁移学习 图像分类 对抗网络
下载PDF
基于生成对抗网络与个性机理模型的旋转机械故障诊断方法 被引量:3
14
作者 吕哲 马波 +1 位作者 于功也 陈一伟 《机电工程》 CAS 北大核心 2022年第9期1203-1210,1219,共9页
在工业生产中,由于故障数据缺失会导致诊断模型构建困难,针对这一问题,提出了一种基于生成对抗网络(GAN)与个性机理模型(MCGM)的旋转机械故障智能诊断方法。首先,采用源域数据完成了对目标域数据的领域自适应,提取出了源域中反映设备故... 在工业生产中,由于故障数据缺失会导致诊断模型构建困难,针对这一问题,提出了一种基于生成对抗网络(GAN)与个性机理模型(MCGM)的旋转机械故障智能诊断方法。首先,采用源域数据完成了对目标域数据的领域自适应,提取出了源域中反映设备故障状态的共性参数,并依据GAN构建了其分布模型;然后,从构建好的分布模型中提取出共性参数,并结合MCGM与目标域正常状态数据,生成了目标域虚拟故障样本,通过虚拟故障样本与目标域正常状态样本训练,得到了目标域故障诊断模型;最后,采用标准数据集与实验室轴承数据,对基于生成对抗网络(GAN)与个性机理模型(MCGM)的旋转机械智能诊断方法进行了验证。研究结果表明:基于GAN-MCGM的旋转机械智能诊断方法在诊断任务中的平均准确率达到了92.5%,平均准确率相较其他对比方法有显著提高。 展开更多
关键词 机械运行与维修 转动机件 领域自适应 故障诊断模型 生成对抗网络 个性机理模型 故障机理
下载PDF
结合风格迁移的最小化类混淆领域自适应算法
15
作者 梅校杰 张灵 《计算机工程与应用》 CSCD 北大核心 2022年第14期153-159,共7页
在无监督领域自适应中分类器对目标域的样本进行类别预测时容易产生混淆预测,虽然已有研究提出了相关算法提取到样本的类间相关性,降低了分类器在目标域上的类混淆预测。但该方法仍然未能解决源域和目标域因共享特征稀疏导致的迁移学习... 在无监督领域自适应中分类器对目标域的样本进行类别预测时容易产生混淆预测,虽然已有研究提出了相关算法提取到样本的类间相关性,降低了分类器在目标域上的类混淆预测。但该方法仍然未能解决源域和目标域因共享特征稀疏导致的迁移学习能力不足的问题,针对这个问题,通过使用生成对抗网络对源域进行了风格迁移,扩展源域各类样本的特征空间可供目标域匹配的共享特征,解决因共享特征稀疏导致分类器正迁移力不足的问题,从而进一步减少分类器在目标域上产生的类混淆预测。当分类器利用扩充后的共享特征对目标域样本预测分类概率时,基于不确定性权重机制,加重预测概率权重使其能在几个预测概率峰值上以更高的概率值突出,准确地量化类混淆,最小化跨域的类混淆预测,抑制跨域的负迁移。在UDA场景下,对标准的数据集ImageCLEF-DA和Office-31的三个子数据集分别进行了领域自适应实验,相较于RADA算法平均识别精度分别提升了1.3个百分点和1.7个百分点。 展开更多
关键词 迁移学习 最小化类混淆 风格迁移 领域自适应 生成对抗网络
下载PDF
基于中间桥层和相似矩阵的深度对抗迁移故障诊断方法
16
作者 蔡能 武兵 +1 位作者 李翔宇 李聪明 《机电工程》 CAS 北大核心 2023年第5期655-663,672,共10页
采用深度对抗迁移学习算法进行故障诊断时,受到领域中丰富的特征属性的影响,在领域自适应中无法充分学习可用于迁移的共有知识特征,且其在类别水平上忽略了不同类别的对齐程度的差异。针对这一问题,提出了一种基于中间桥层和相似矩阵(MB... 采用深度对抗迁移学习算法进行故障诊断时,受到领域中丰富的特征属性的影响,在领域自适应中无法充分学习可用于迁移的共有知识特征,且其在类别水平上忽略了不同类别的对齐程度的差异。针对这一问题,提出了一种基于中间桥层和相似矩阵(MB-SM)的对抗故障诊断模型,以实现对滚动轴承故障进行跨域诊断识别的目的。首先,利用改进的一维多尺度残差网络对数据的特征进行了提取;然后,引入了中间桥层和相似矩阵,完成了对共有知识特征的充分学习,降低了整体网络的数据传输难度,进一步加强了源域和目标域中同一类别内的聚类和类别之间的分离,提高了故障数据的领域适配能力;最后,采用实验室轴承数据集和美国凯斯西储大学(CWRU)数据集,对基于中间桥层和相似矩阵的模型方法进行了验证。研究结果表明:在自建实验室数据集中,采用基于中间桥层和相似矩阵的方法可以达到90.37%的平均准确率;在美国凯斯西储大学(CWRU)数据集中,也可以达到99.34%的平均准确率。相较于其他迁移学习对比模型,采用该模型方法可以获得更好的诊断性能。 展开更多
关键词 滚动轴承 故障跨域诊断识别 中间桥层和相似矩阵 对抗性迁移学习 领域自适应 深度卷积神经网络
下载PDF
基于DANN-LSTM的电动汽车负荷预测
17
作者 刘子博 《通信电源技术》 2023年第7期34-38,共5页
针对社区微网中电动汽车负荷预测存在的数据样本不足的问题,提出一种将长短期记忆(Long Short-Term Memory,LSTM)与领域自适应神经网络(Domain Adaptive Neural Network,DANN)结合形成DaNN-LSTM的负荷预测算法,从而实现对社区微网小样... 针对社区微网中电动汽车负荷预测存在的数据样本不足的问题,提出一种将长短期记忆(Long Short-Term Memory,LSTM)与领域自适应神经网络(Domain Adaptive Neural Network,DANN)结合形成DaNN-LSTM的负荷预测算法,从而实现对社区微网小样本的电动汽车负荷数据的准确预测。利用预处理后的源域数据预先训练好LSTM模型,再将LSTM模型的相关参数迁移到DANN的LSTM层中,最后对社区微网中的负荷数据进行重复训练,得出预测结果。预测结果表明,所提到的方法相比于LSTM模型的准确率有了一定程度的提高,可以满足实际需求。 展开更多
关键词 社区微网 负荷预测 长短期记忆(LSTM)神经网络 迁移学习 领域自适应神经网络(dann)
下载PDF
基于对抗训练的跨语料库语音情感识别方法 被引量:3
18
作者 薛艳飞 张建明 《微电子学与计算机》 2021年第3期77-83,共7页
在跨语料库语音情感识别中,训练和测试数据分布的差异变得非常明显,导致验证和测试性能差别很大.针对该问题,提出一种基于对抗训练的跨语料库语音情感识别方法.该方法通过语料库之间的对抗训练能有效地缩小不同语料库之间的差异,提升模... 在跨语料库语音情感识别中,训练和测试数据分布的差异变得非常明显,导致验证和测试性能差别很大.针对该问题,提出一种基于对抗训练的跨语料库语音情感识别方法.该方法通过语料库之间的对抗训练能有效地缩小不同语料库之间的差异,提升模型对域不变情感特征的提取能力.同时,通过引入多头自注意力机制,对语音序列中不同位置元素之间的依赖关系进行序列建模,增强序列中情感显著特征的提取能力.在以IEMOCAP为源域、MSP-IMPRO为目标域和在以MSP-IMPRO为源域、IEMOCAP为目标域上的实验表明,所提出方法的相对UAR性能相比于基准方法分别提升了0.91%~12.22%和2.27%~6.90%.因此,在目标域标注缺失的情况下,所提出的跨语料库语音情感识别方法具有更好的域不变情感显著特征的提取能力. 展开更多
关键词 领域适应 对抗训练 卷积神经网络 循环神经网络 自注意力机制
下载PDF
基于改进DaNN的综合能源系统多能负荷预测 被引量:13
19
作者 何桂雄 金璐 +2 位作者 李克成 何伟 闫华光 《电力工程技术》 北大核心 2021年第6期25-33,共9页
随着能源革命的推进及双碳目标的提出,综合能源系统越发受到广大研究者的重视,对综合能源系统进行高效的规划和控制离不开精准的多能负荷预测。基于上述需求,引入迁移学习理论,提出一种改进领域自适应神经网络(DaNN)负荷预测模型对综合... 随着能源革命的推进及双碳目标的提出,综合能源系统越发受到广大研究者的重视,对综合能源系统进行高效的规划和控制离不开精准的多能负荷预测。基于上述需求,引入迁移学习理论,提出一种改进领域自适应神经网络(DaNN)负荷预测模型对综合能源系统中的冷、热、电负荷进行统一建模与预测。首先,通过历史数据分别构筑冷、热、电负荷特征图,随后输入改进DaNN的参数共享卷积层和全连接层;其次,基于冷、热、电负荷联合预测的特点改进传统神经网络的损失函数,加入最大均值差异指标,并优化训练模型;最后,通过3个各自独立的全连接层分别输出冷、热、电负荷的预测值。通过采用实际算例验证并与基准模型对比可知,所提改进DaNN模型能够有效提高综合能源多能负荷预测精度。 展开更多
关键词 综合能源系统 负荷预测 迁移学习 卷积神经网络(CNN) 领域自适应神经网络(dann) 多能耦合
下载PDF
基于LSTM-DaNN的动力电池SOC估算方法 被引量:7
20
作者 王一全 黄碧雄 +5 位作者 严晓 刘新田 王影 刘双宇 徐华源 《储能科学与技术》 CAS CSCD 2020年第6期1969-1975,共7页
针对动力电池荷电状态(state of charge,SOC)的估算问题,利用长短期记忆(LSTM)循环神经网络建立SOC估算模型,以实验室恒流放电数据训练模型并测试,测试最大绝对误差为2.7%。进一步以FSEC赛车电池实测数据验证,最大测试误差为3.9%。但在... 针对动力电池荷电状态(state of charge,SOC)的估算问题,利用长短期记忆(LSTM)循环神经网络建立SOC估算模型,以实验室恒流放电数据训练模型并测试,测试最大绝对误差为2.7%。进一步以FSEC赛车电池实测数据验证,最大测试误差为3.9%。但在工程应用时,考虑到实际运行过程中的环境复杂性以及不同驾驶习惯对动力电池造成的不一致性,需要根据车辆实际行驶工况数据对其进行训练与测试,但是由于该数据中的SOC直接由BMS报文解析而来,无法确定BMS内的SOC算法是否准确,故不能直接用作训练模型时的标签,此时需计算出正确的训练标签或借助已有标签的模型,在其基础上根据实际运行数据对其模型参数进行动态调整。为解决无标签数据的训练问题,本文采取第二种方法,首次提出将迁移学习中的领域自适应网络(DaNN)与LSTM组合形成LSTM-DaNN的SOC估算算法,利用有标签数据预先训练好LSTM模型,再将其模型参数迁移至LSTM-DaNN,最后综合有标签与无标签数据一起对LSTM-DaNN模型进行训练。测试结果表明LSTM-DaNN可以在没有实际行驶工况标签(SOC)的情况下完成训练,最大测试误差为4.8%,相比模型自适应调整前误差下降了14.1%,且保证绝对误差<5%,满足实际需求。 展开更多
关键词 荷电状态(SOC) 长短期记忆(LSTM) 迁移学习 领域自适应网络(dann)
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部