生成适应模型利用生成对抗网络实现模型结构,并在领域适应学习上取得了突破.但其部分网络结构缺少信息交互,且仅使用对抗学习不足以完全减小域间距离,从而使分类精度受到影响.为此,提出一种基于生成对抗网络的无监督域适应分类模型(Unsu...生成适应模型利用生成对抗网络实现模型结构,并在领域适应学习上取得了突破.但其部分网络结构缺少信息交互,且仅使用对抗学习不足以完全减小域间距离,从而使分类精度受到影响.为此,提出一种基于生成对抗网络的无监督域适应分类模型(Unsupervised Domain Adaptation classification model based on GAN,UDAG).该模型通过联合使用生成对抗网络和多核最大均值差异度量准则优化域间差异,并充分利用无监督对抗训练及监督分类训练之间的信息传递以学习源域分布和目标域分布之间的共享特征.通过在四种域适应情况下的实验结果表明,UDAG模型学习到更优的共享特征嵌入并实现了域适应图像分类,且分类精度有明显提高.展开更多
针对动力电池荷电状态(state of charge,SOC)的估算问题,利用长短期记忆(LSTM)循环神经网络建立SOC估算模型,以实验室恒流放电数据训练模型并测试,测试最大绝对误差为2.7%。进一步以FSEC赛车电池实测数据验证,最大测试误差为3.9%。但在...针对动力电池荷电状态(state of charge,SOC)的估算问题,利用长短期记忆(LSTM)循环神经网络建立SOC估算模型,以实验室恒流放电数据训练模型并测试,测试最大绝对误差为2.7%。进一步以FSEC赛车电池实测数据验证,最大测试误差为3.9%。但在工程应用时,考虑到实际运行过程中的环境复杂性以及不同驾驶习惯对动力电池造成的不一致性,需要根据车辆实际行驶工况数据对其进行训练与测试,但是由于该数据中的SOC直接由BMS报文解析而来,无法确定BMS内的SOC算法是否准确,故不能直接用作训练模型时的标签,此时需计算出正确的训练标签或借助已有标签的模型,在其基础上根据实际运行数据对其模型参数进行动态调整。为解决无标签数据的训练问题,本文采取第二种方法,首次提出将迁移学习中的领域自适应网络(DaNN)与LSTM组合形成LSTM-DaNN的SOC估算算法,利用有标签数据预先训练好LSTM模型,再将其模型参数迁移至LSTM-DaNN,最后综合有标签与无标签数据一起对LSTM-DaNN模型进行训练。测试结果表明LSTM-DaNN可以在没有实际行驶工况标签(SOC)的情况下完成训练,最大测试误差为4.8%,相比模型自适应调整前误差下降了14.1%,且保证绝对误差<5%,满足实际需求。展开更多
文摘生成适应模型利用生成对抗网络实现模型结构,并在领域适应学习上取得了突破.但其部分网络结构缺少信息交互,且仅使用对抗学习不足以完全减小域间距离,从而使分类精度受到影响.为此,提出一种基于生成对抗网络的无监督域适应分类模型(Unsupervised Domain Adaptation classification model based on GAN,UDAG).该模型通过联合使用生成对抗网络和多核最大均值差异度量准则优化域间差异,并充分利用无监督对抗训练及监督分类训练之间的信息传递以学习源域分布和目标域分布之间的共享特征.通过在四种域适应情况下的实验结果表明,UDAG模型学习到更优的共享特征嵌入并实现了域适应图像分类,且分类精度有明显提高.
文摘针对动力电池荷电状态(state of charge,SOC)的估算问题,利用长短期记忆(LSTM)循环神经网络建立SOC估算模型,以实验室恒流放电数据训练模型并测试,测试最大绝对误差为2.7%。进一步以FSEC赛车电池实测数据验证,最大测试误差为3.9%。但在工程应用时,考虑到实际运行过程中的环境复杂性以及不同驾驶习惯对动力电池造成的不一致性,需要根据车辆实际行驶工况数据对其进行训练与测试,但是由于该数据中的SOC直接由BMS报文解析而来,无法确定BMS内的SOC算法是否准确,故不能直接用作训练模型时的标签,此时需计算出正确的训练标签或借助已有标签的模型,在其基础上根据实际运行数据对其模型参数进行动态调整。为解决无标签数据的训练问题,本文采取第二种方法,首次提出将迁移学习中的领域自适应网络(DaNN)与LSTM组合形成LSTM-DaNN的SOC估算算法,利用有标签数据预先训练好LSTM模型,再将其模型参数迁移至LSTM-DaNN,最后综合有标签与无标签数据一起对LSTM-DaNN模型进行训练。测试结果表明LSTM-DaNN可以在没有实际行驶工况标签(SOC)的情况下完成训练,最大测试误差为4.8%,相比模型自适应调整前误差下降了14.1%,且保证绝对误差<5%,满足实际需求。