Teleoperation rendezvous and docking can be used as a backup for autonomous rendezvous and docking (RVD) for an unmanned spacecraft or for guiding the chaser docking with an uncooperative target.The inherent teleopera...Teleoperation rendezvous and docking can be used as a backup for autonomous rendezvous and docking (RVD) for an unmanned spacecraft or for guiding the chaser docking with an uncooperative target.The inherent teleoperation time delay is a rigorous problem,especially when the chaser is teleoperated on the ground.To eliminate the effect of time delay,a new approach for teleoperation RVD is studied.The characteristics of teleoperation RVD are analyzed by comparisons with the teleoperation robot and with manually controlled RVD;the relative motion of the chaser is predicted based on the C-W equation;and the processed measure information with time delay through the Kalman filter is utilized to correct the current prediction.Experimental results verify that the approach produces an 18% enhanced success rate of teleoperation RVD compared with direct visual feedback,and consumes less time and fuel.The developed approach also solves the time delay problem effectively.Teleoperation RVD using this method can be applied as a useful backup for autonomous RVD.展开更多
文摘Teleoperation rendezvous and docking can be used as a backup for autonomous rendezvous and docking (RVD) for an unmanned spacecraft or for guiding the chaser docking with an uncooperative target.The inherent teleoperation time delay is a rigorous problem,especially when the chaser is teleoperated on the ground.To eliminate the effect of time delay,a new approach for teleoperation RVD is studied.The characteristics of teleoperation RVD are analyzed by comparisons with the teleoperation robot and with manually controlled RVD;the relative motion of the chaser is predicted based on the C-W equation;and the processed measure information with time delay through the Kalman filter is utilized to correct the current prediction.Experimental results verify that the approach produces an 18% enhanced success rate of teleoperation RVD compared with direct visual feedback,and consumes less time and fuel.The developed approach also solves the time delay problem effectively.Teleoperation RVD using this method can be applied as a useful backup for autonomous RVD.