Starting from a 3 × 3 matrix spectral problem, we derive a hierarchy of nonlinear equations. It is shown that the hierarchy possesses bi-Hamiltonian structure. Under the symmetry constraints between the potential...Starting from a 3 × 3 matrix spectral problem, we derive a hierarchy of nonlinear equations. It is shown that the hierarchy possesses bi-Hamiltonian structure. Under the symmetry constraints between the potentials and the eigenfunctions, Lax pair and adjoint Lax pairs including partial part and temporal part are nonlinearied into two finitedimensional Hamiltonian systems (FDHS) in Liouville sense. Moreover, an explicit N-fold Darboux transformation for CDNS equation is constructed with the help of a gauge transformation of the spectral problem.展开更多
After considering the variable coefficient of a nonlinear equation as a new dependent variable, some special types of variable-coefficient equation can be solved from the corresponding constant-coefficient equations b...After considering the variable coefficient of a nonlinear equation as a new dependent variable, some special types of variable-coefficient equation can be solved from the corresponding constant-coefficient equations by using the general classical Lie approach. Taking the nonlinear Schr?dinger equation as a concrete example, the method is recommended in detail.展开更多
The XYZ antiferromagnetic model in linear spin-wave frame is shown explicitly to have an su(1,2) algebraic structure: the Hamiltonian can be written as a linear function of the su(1,2) algebra generators. Based o...The XYZ antiferromagnetic model in linear spin-wave frame is shown explicitly to have an su(1,2) algebraic structure: the Hamiltonian can be written as a linear function of the su(1,2) algebra generators. Based on it, the energy eigenvalues are obta/ned by making use of the similar transformations, and the algebraic diagonalization method is investigated. Some numerical solutions are given, and the results indicate that only one group solution could be accepted in physics.展开更多
The water entry problem of an asymmetric wedge with roll motion was analyzed by the method of a modified Logvinovich model (MLM). The MLM is a kind of analytical model based on the Wagner method, which linearizes the ...The water entry problem of an asymmetric wedge with roll motion was analyzed by the method of a modified Logvinovich model (MLM). The MLM is a kind of analytical model based on the Wagner method, which linearizes the free surface condition and body boundary condition. The difference is that the MLM applies a nonlinear Bernoulli equation to obtain pressure distribution, which has been proven to be helpful to enhance the accuracy of hydrodynamic loads. The Wagner condition in this paper was generalized to solve the problem of the water entry of a wedge body with rotational velocity. The comparison of wet width between the MLM and a fully nonlinear numerical approach was given, and they agree well with each other. The effect of angular velocity on the hydrodynamic loads of a wedge body was investigated.展开更多
By use of a direct method, we discuss symmetries and reductions of the two-dimensional Burgers equation with variable coefficient (VCBurgers). Five types of symmetry-reducing VCBurgers to (1+1)-dimensional partial dif...By use of a direct method, we discuss symmetries and reductions of the two-dimensional Burgers equation with variable coefficient (VCBurgers). Five types of symmetry-reducing VCBurgers to (1+1)-dimensional partial differential equation and three types of symmetry reducing VCBurgers to ordinary differential equation are obtained.展开更多
A direct as well as iterative method(called the orthogonally accumulated projection method, or the OAP for short) for solving linear system of equations with symmetric coefficient matrix is introduced in this paper. W...A direct as well as iterative method(called the orthogonally accumulated projection method, or the OAP for short) for solving linear system of equations with symmetric coefficient matrix is introduced in this paper. With the Lanczos process the OAP creates a sequence of mutually orthogonal vectors, on the basis of which the projections of the unknown vectors are easily obtained, and thus the approximations to the unknown vectors can be simply constructed by a combination of these projections. This method is an application of the accumulated projection technique proposed recently by the authors of this paper, and can be regarded as a match of conjugate gradient method(CG) in its nature since both the CG and the OAP can be regarded as iterative methods, too. Unlike the CG method which can be only used to solve linear systems with symmetric positive definite coefficient matrices, the OAP can be used to handle systems with indefinite symmetric matrices. Unlike classical Krylov subspace methods which usually ignore the issue of loss of orthogonality, OAP uses an effective approach to detect the loss of orthogonality and a restart strategy is used to handle the loss of orthogonality.Numerical experiments are presented to demonstrate the efficiency of the OAP.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 10371023 and Shanghai Shuguang Project of China under Grant No. 02SG02
文摘Starting from a 3 × 3 matrix spectral problem, we derive a hierarchy of nonlinear equations. It is shown that the hierarchy possesses bi-Hamiltonian structure. Under the symmetry constraints between the potentials and the eigenfunctions, Lax pair and adjoint Lax pairs including partial part and temporal part are nonlinearied into two finitedimensional Hamiltonian systems (FDHS) in Liouville sense. Moreover, an explicit N-fold Darboux transformation for CDNS equation is constructed with the help of a gauge transformation of the spectral problem.
基金国家自然科学基金,浙江省自然科学基金,Foundation of State Key Laboratory of Oil/Gas Reservoir Geology and Exploitation (PLN 0104),the Foundation of Educational Commission,浙江省宁波市博士基金
文摘After considering the variable coefficient of a nonlinear equation as a new dependent variable, some special types of variable-coefficient equation can be solved from the corresponding constant-coefficient equations by using the general classical Lie approach. Taking the nonlinear Schr?dinger equation as a concrete example, the method is recommended in detail.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10447103 and 90305026the Natural Science Foundation of Beijing under Grant No.1072010the Foundation of Education Department of Beijing under Grant No.KM200610772007
文摘The XYZ antiferromagnetic model in linear spin-wave frame is shown explicitly to have an su(1,2) algebraic structure: the Hamiltonian can be written as a linear function of the su(1,2) algebra generators. Based on it, the energy eigenvalues are obta/ned by making use of the similar transformations, and the algebraic diagonalization method is investigated. Some numerical solutions are given, and the results indicate that only one group solution could be accepted in physics.
基金Supported by Supported by "111 Program" (B07019)
文摘The water entry problem of an asymmetric wedge with roll motion was analyzed by the method of a modified Logvinovich model (MLM). The MLM is a kind of analytical model based on the Wagner method, which linearizes the free surface condition and body boundary condition. The difference is that the MLM applies a nonlinear Bernoulli equation to obtain pressure distribution, which has been proven to be helpful to enhance the accuracy of hydrodynamic loads. The Wagner condition in this paper was generalized to solve the problem of the water entry of a wedge body with rotational velocity. The comparison of wet width between the MLM and a fully nonlinear numerical approach was given, and they agree well with each other. The effect of angular velocity on the hydrodynamic loads of a wedge body was investigated.
文摘By use of a direct method, we discuss symmetries and reductions of the two-dimensional Burgers equation with variable coefficient (VCBurgers). Five types of symmetry-reducing VCBurgers to (1+1)-dimensional partial differential equation and three types of symmetry reducing VCBurgers to ordinary differential equation are obtained.
基金supported by National Natural Science Foundation of China (Grant Nos. 91430108 and 11171251)the Major Program of Tianjin University of Finance and Economics (Grant No. ZD1302)
文摘A direct as well as iterative method(called the orthogonally accumulated projection method, or the OAP for short) for solving linear system of equations with symmetric coefficient matrix is introduced in this paper. With the Lanczos process the OAP creates a sequence of mutually orthogonal vectors, on the basis of which the projections of the unknown vectors are easily obtained, and thus the approximations to the unknown vectors can be simply constructed by a combination of these projections. This method is an application of the accumulated projection technique proposed recently by the authors of this paper, and can be regarded as a match of conjugate gradient method(CG) in its nature since both the CG and the OAP can be regarded as iterative methods, too. Unlike the CG method which can be only used to solve linear systems with symmetric positive definite coefficient matrices, the OAP can be used to handle systems with indefinite symmetric matrices. Unlike classical Krylov subspace methods which usually ignore the issue of loss of orthogonality, OAP uses an effective approach to detect the loss of orthogonality and a restart strategy is used to handle the loss of orthogonality.Numerical experiments are presented to demonstrate the efficiency of the OAP.