The aim of the present work is to develop a model for simulating double-peak precipitation hardening kinetics in Al-Zn-Mg alloy with the simultaneous formation of different types of precipitates at elevated temperatur...The aim of the present work is to develop a model for simulating double-peak precipitation hardening kinetics in Al-Zn-Mg alloy with the simultaneous formation of different types of precipitates at elevated temperatures based on the modified Langer-Schwartz approach. The double aging peaks are present in the long time age-hardening curves of Al-Zn-Mg alloys. The physically-based model, while taking explicitly into account nucleation, growth, coarsening of the new phase precipitations and two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing), was used for the analysis of precipitates evolution and precipitation hardening during aging of Al-Zn-Mg alloy. Model predictions were compared with the measurements of Al-Zn-Mg alloy. The systematic and quantitative results show that the predicted hardness profiles of double peaks via adding a shape dependent parameter in the growth equation for growth and coarsening generally agree well with the measured ones. Two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing) were considered operating simultaneously in view of the particle size-distribution. The transition from shearing to bypassing strengthening mechanism was found to occur at rather early stage of the particle growth. The bypassing was found to be the prevailing strengthening mechanism in the investigated alloys.展开更多
Spontaneous symmetry breaking has been a paradigm to describe the phase transitions in condensed matter physics.In addition to the continuous electromagnetic gauge symmetry,an unconventional superconductor can break d...Spontaneous symmetry breaking has been a paradigm to describe the phase transitions in condensed matter physics.In addition to the continuous electromagnetic gauge symmetry,an unconventional superconductor can break discrete symmetries simultaneously,such as time reversal and lattice rotational symmetry.In this work we report a characteristic in-plane 2-fold behaviour of the resistive upper critical field and point-contact spectra on the superconducting semimetal PbTaSe2 with topological nodal-rings,despite its hexagonal lattice symmetry(or D3 h in bulk while C3 v on surface,to be precise).The 2-fold behaviour persists up to its surface upper critical field Hc2R even though bulk superconductivity has been suppressed at its bulk upper critical field Hc2HC<<Hc2R,signaling its probable surface-only electronic nematicity.In addition,we do not observe any lattice rotational symmetry breaking signal from field-angle-dependent specific heat within the resolution.It is worth noting that such surface-only electronic nematicity is in sharp contrast to the observation in the topological superconductor candidate,CuxBi2Se3,where the nematicity occurs in various bulk measurements.In combination with theory,superconducting nematicity is likely to emerge from the topological surface states of PbTaSe2,rather than the proximity effect.The issue of time reversal symmetry breaking is also addressed.Thus,our results on PbTaSe2 shed new light on possible routes to realize nematic superconductivity with nontrivial topology.展开更多
基金Project(51021063)supported by the Creative Research Group of the National Natural Science Foundation of ChinaProject(50831007)supported by the National Natural Science Foundation of China+1 种基金Project(2011CB610401)supported by the National Basic Research Program of ChinaProject(12C1142)supported by the Education Department of Hunan Province,China
文摘The aim of the present work is to develop a model for simulating double-peak precipitation hardening kinetics in Al-Zn-Mg alloy with the simultaneous formation of different types of precipitates at elevated temperatures based on the modified Langer-Schwartz approach. The double aging peaks are present in the long time age-hardening curves of Al-Zn-Mg alloys. The physically-based model, while taking explicitly into account nucleation, growth, coarsening of the new phase precipitations and two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing), was used for the analysis of precipitates evolution and precipitation hardening during aging of Al-Zn-Mg alloy. Model predictions were compared with the measurements of Al-Zn-Mg alloy. The systematic and quantitative results show that the predicted hardness profiles of double peaks via adding a shape dependent parameter in the growth equation for growth and coarsening generally agree well with the measured ones. Two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing) were considered operating simultaneously in view of the particle size-distribution. The transition from shearing to bypassing strengthening mechanism was found to occur at rather early stage of the particle growth. The bypassing was found to be the prevailing strengthening mechanism in the investigated alloys.
基金the National Key R&D Program of China(2016FYA0300402 and 2017YFA0303101)the National Natural Science Foundation of China(NSFC)(11674279 and 11374257)+8 种基金supported in part by the NSFC(U1732162 and 11974061)support from the Zhejiang Provincial Natural Science Foundation(LR18A04001)supported in part by the National Key Research and Development Program of China(2016YFA0300202)the National Natural Science Foundation of China(11774306)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB28000000)partly supported by KAKENHI(JP20H05164,19K14661,15H05883,18H01161,and JP17K05553)from JSPS‘‘JPhysics”(18H04306)financial support provided by the Project Number MOST-108-2112-M-001-049-MY2the Academia Sinica for the budget of AS-iMATE-109-13。
文摘Spontaneous symmetry breaking has been a paradigm to describe the phase transitions in condensed matter physics.In addition to the continuous electromagnetic gauge symmetry,an unconventional superconductor can break discrete symmetries simultaneously,such as time reversal and lattice rotational symmetry.In this work we report a characteristic in-plane 2-fold behaviour of the resistive upper critical field and point-contact spectra on the superconducting semimetal PbTaSe2 with topological nodal-rings,despite its hexagonal lattice symmetry(or D3 h in bulk while C3 v on surface,to be precise).The 2-fold behaviour persists up to its surface upper critical field Hc2R even though bulk superconductivity has been suppressed at its bulk upper critical field Hc2HC<<Hc2R,signaling its probable surface-only electronic nematicity.In addition,we do not observe any lattice rotational symmetry breaking signal from field-angle-dependent specific heat within the resolution.It is worth noting that such surface-only electronic nematicity is in sharp contrast to the observation in the topological superconductor candidate,CuxBi2Se3,where the nematicity occurs in various bulk measurements.In combination with theory,superconducting nematicity is likely to emerge from the topological surface states of PbTaSe2,rather than the proximity effect.The issue of time reversal symmetry breaking is also addressed.Thus,our results on PbTaSe2 shed new light on possible routes to realize nematic superconductivity with nontrivial topology.