期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于故障分量瞬时功率相空间轨迹识别的线路纵联保护新原理 被引量:7
1
作者 金能 戎子睿 +6 位作者 林湘宁 邢家维 李正天 刘世明 刘尧 张培夫 井嵘 《中国电机工程学报》 EI CSCD 北大核心 2019年第9期2702-2713,共12页
纵联差动保护具有高选择性、全线速动的优点,广泛应用于220kV及以上高压输电线路,其动作性能显著优于其他纵联主保护,在现场应用中逐渐居主导地位。但是,采样数据同步对时误差、可控高抗补偿度不确定等因素将对该保护的性能产生较大的... 纵联差动保护具有高选择性、全线速动的优点,广泛应用于220kV及以上高压输电线路,其动作性能显著优于其他纵联主保护,在现场应用中逐渐居主导地位。但是,采样数据同步对时误差、可控高抗补偿度不确定等因素将对该保护的性能产生较大的不利影响。针对上述问题,基于相空间轨迹识别的思路,提出一种具备抗同步对时误差能力的线路纵联保护新原理:首先从理论上验证了相空间重构法应用于线路保护的可行性,选取故障分量瞬时功率作为重构相空间的一维时间序列,分析了系统不同工况下相空间轨迹的变化规律,进而设计了一种基于相空间轨迹识别的线路纵联保护新判据。基于PSCAD/EMTDC的仿真结果表明,所提新判据具有免整定、超快速动作,不受并联电抗器补偿度不确定影响,基本不受两侧数据失步影响,以及耐受高过渡电阻等优点。 展开更多
关键词 纵联保护 同步对时误差 可控高抗 相空间轨迹 故障分量瞬功率 免整定
下载PDF
数字化变电站对时状态在线监测的解决方案 被引量:4
2
作者 葛雅川 董贝 +1 位作者 韩春江 徐頔飞 《电力系统通信》 2012年第6期45-48,共4页
数字化变电站对二次设备时间的准确性要求越来越高,时间的高精度和统一已成为数字化变电站的基本要求。在线监测二次设备的对时状态已成为在实际工程应用中迫切需要解决的问题。文章提出了一种基于GOOSE的对时状态传输处理方案。通过间... 数字化变电站对二次设备时间的准确性要求越来越高,时间的高精度和统一已成为数字化变电站的基本要求。在线监测二次设备的对时状态已成为在实际工程应用中迫切需要解决的问题。文章提出了一种基于GOOSE的对时状态传输处理方案。通过间隔层和过程层网络,利用GOOSE的订阅/发布机制,传输时间信息及标志;利用网络延时算法,计算对时误差;利用MMS协议将获取的对时标志和误差以报告形式上传到监控系统,实现对时状态的在线监测。 展开更多
关键词 在线监测 对时误差 GOOSE MMS
下载PDF
输电线路线损的多参量修正算法 被引量:14
3
作者 汪应春 张宇轩 +3 位作者 王赞 杨建华 李红斌 明东岳 《电力科学与技术学报》 CAS 北大核心 2020年第5期126-131,共6页
随着线损精益化管理的不断推进,输电线路线损计算准确性愈加重要。目前的线损计算方法未考虑负荷水平、时钟准确度以及计量装置配合影响,导致实际统计与计算结果差别较大,不利于线损管理的精益化发展。以现有理论线损计算方法为基础,对... 随着线损精益化管理的不断推进,输电线路线损计算准确性愈加重要。目前的线损计算方法未考虑负荷水平、时钟准确度以及计量装置配合影响,导致实际统计与计算结果差别较大,不利于线损管理的精益化发展。以现有理论线损计算方法为基础,对统计线损影响量进行分析,提出多参量修正算法,提高线损计算的准确性,并以重庆—恩施500 kV超高压输电线路作为算例,证明了该方法的有效性。 展开更多
关键词 理论线损 低负荷工况 对时误差 计量装置配合 多参量算法修正
下载PDF
Interval of effective time-step size for the numerical computation of nonlinear ordinary differential equations
4
作者 CAO Jing LI Jian-Ping ZHANG Xin-Yuan 《Atmospheric and Oceanic Science Letters》 CSCD 2017年第1期17-20,共4页
The computational uncertainty principle states that the numerical computation of nonlinear ordinary differential equations(ODEs) should use appropriately sized time steps to obtain reliable solutions.However,the int... The computational uncertainty principle states that the numerical computation of nonlinear ordinary differential equations(ODEs) should use appropriately sized time steps to obtain reliable solutions.However,the interval of effective step size(IES) has not been thoroughly explored theoretically.In this paper,by using a general estimation for the total error of the numerical solutions of ODEs,a method is proposed for determining an approximate IES by translating the functions for truncation and rounding errors.It also illustrates this process with an example.Moreover,the relationship between the IES and its approximation is found,and the relative error of the approximation with respect to the IES is given.In addition,variation in the IES with increasing integration time is studied,which can provide an explanation for the observed numerical results.The findings contribute to computational step-size choice for reliable numerical solutions. 展开更多
关键词 Ordinary differential equations interval of effective step size computational uncertainty principle integration time relative error
下载PDF
Predication of plasma concentration of remifentanil based on Elman neural network 被引量:1
5
作者 汤井田 曹扬 +1 位作者 肖嘉莹 郭曲练 《Journal of Central South University》 SCIE EI CAS 2013年第11期3187-3192,共6页
Due to the nature of ultra-short-acting opioid remifentanil of high time-varying,complex compartment model and low-accuracy of plasma concentration prediction,the traditional estimation method of population pharmacoki... Due to the nature of ultra-short-acting opioid remifentanil of high time-varying,complex compartment model and low-accuracy of plasma concentration prediction,the traditional estimation method of population pharmacokinetics parameters,nonlinear mixed effects model(NONMEM),has the abuses of tedious work and plenty of man-made jamming factors.The Elman feedback neural network was built.The relationships between the patients’plasma concentration of remifentanil and time,patient’age,gender,lean body mass,height,body surface area,sampling time,total dose,and injection rate through network training were obtained to predict the plasma concentration of remifentanil,and after that,it was compared with the results of NONMEM algorithm.In conclusion,the average error of Elman network is 6.34%,while that of NONMEM is 18.99%.The absolute average error of Elman network is 27.07%,while that of NONMEM is 38.09%.The experimental results indicate that Elman neural network could predict the plasma concentration of remifentanil rapidly and stably,with high accuracy and low error.For the characteristics of simple principle and fast computing speed,this method is suitable to data analysis of short-acting anesthesia drug population pharmacokinetic and pharmacodynamics. 展开更多
关键词 Elman neural network REMIFENTANIL plasma concentration predication model
下载PDF
Early exercise European option and early termination American option pricing models
6
作者 YAN Yong-xin HU Yan-li 《Chinese Business Review》 2010年第11期21-25,共5页
The maximum relative error between continuous-time American option pricing model and binomial tree model is very small. In order to improve the European and American options in trade course, the thesis tried to build ... The maximum relative error between continuous-time American option pricing model and binomial tree model is very small. In order to improve the European and American options in trade course, the thesis tried to build early exercise European option and early termination American option pricing models. Firstly, the authors reviewed the characteristics of American option and European option, then there was compares between them. Base on continuous-time American option pricing model, this research analyzed the value of these options. 展开更多
关键词 option pricing early exercise European option pricing early termination American option pricing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部