The alternating direction method of multipliers(ADMM)is a benchmark for solving convex programming problems with separable objective functions and linear constraints.In the literature it has been illustrated as an app...The alternating direction method of multipliers(ADMM)is a benchmark for solving convex programming problems with separable objective functions and linear constraints.In the literature it has been illustrated as an application of the proximal point algorithm(PPA)to the dual problem of the model under consideration.This paper shows that ADMM can also be regarded as an application of PPA to the primal model with a customized choice of the proximal parameter.This primal illustration of ADMM is thus complemental to its dual illustration in the literature.This PPA revisit on ADMM from the primal perspective also enables us to recover the generalized ADMM proposed by Eckstein and Bertsekas easily.A worst-case O(1/t)convergence rate in ergodic sense is established for a slight extension of Eckstein and Bertsekas’s generalized ADMM.展开更多
This paper obtains sufficient optimality conditions for a nonlinear nondifferentiable multiobjective semi-infinite programming problem involving generalized(C,α,ρ,d)-convex functions.The authors formulate Mond-Weir-...This paper obtains sufficient optimality conditions for a nonlinear nondifferentiable multiobjective semi-infinite programming problem involving generalized(C,α,ρ,d)-convex functions.The authors formulate Mond-Weir-type dual model for the nonlinear nondifferentiable multiobjective semiinfinite programming problem and establish weak,strong and strict converse duality theorems relating the primal and the dual problems.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11001124 and 91130007)the Doctoral Fund of Ministry of Eduction of China(Grant No.20110091110004)the General Research Fund from Hong Kong Research Grants Council(Grant No.HKBU 203712)
文摘The alternating direction method of multipliers(ADMM)is a benchmark for solving convex programming problems with separable objective functions and linear constraints.In the literature it has been illustrated as an application of the proximal point algorithm(PPA)to the dual problem of the model under consideration.This paper shows that ADMM can also be regarded as an application of PPA to the primal model with a customized choice of the proximal parameter.This primal illustration of ADMM is thus complemental to its dual illustration in the literature.This PPA revisit on ADMM from the primal perspective also enables us to recover the generalized ADMM proposed by Eckstein and Bertsekas easily.A worst-case O(1/t)convergence rate in ergodic sense is established for a slight extension of Eckstein and Bertsekas’s generalized ADMM.
文摘This paper obtains sufficient optimality conditions for a nonlinear nondifferentiable multiobjective semi-infinite programming problem involving generalized(C,α,ρ,d)-convex functions.The authors formulate Mond-Weir-type dual model for the nonlinear nondifferentiable multiobjective semiinfinite programming problem and establish weak,strong and strict converse duality theorems relating the primal and the dual problems.