Well logging curves serve as indicators of strata attribute changes and are frequently utilized for stratigraphic analysis and comparison.Deep learning,known for its robust feature extraction capabilities,has seen con...Well logging curves serve as indicators of strata attribute changes and are frequently utilized for stratigraphic analysis and comparison.Deep learning,known for its robust feature extraction capabilities,has seen continuous adoption by scholars in the realm of well logging stratigraphic correlation tasks.Nonetheless,current deep learning algorithms often struggle to accurately capture feature changes occurring at layer boundaries within the curves.Moreover,when faced with data imbalance issues,neural networks encounter challenges in accurately modeling the one-hot encoded curve stratifi cation positions,resulting in signifi cant deviations between predicted and actual stratifi cation positions.Addressing these challenges,this study proposes a novel well logging curve stratigraphic comparison algorithm based on uniformly distributed soft labels.In the training phase,a label smoothing loss function is introduced to comprehensively account for the substantial loss stemming from data imbalance and to consider the similarity between diff erent layer data.Concurrently,spatial attention and channel attention mechanisms are incorporated into the shallow and deep encoder stages of U²-Net,respectively,to better focus on changes in stratifi cation positions.During the prediction phase,an optimized confi dence threshold algorithm is proposed to constrain stratifi cation results and solve the problem of reduced prediction accuracy because of occasional layer repetition.The proposed method is applied to real-world well logging data in oil fi elds.Quantitative evaluation results demonstrate that within error ranges of 1,2,and 3 m,the accuracy of well logging curve stratigraphic division reaches 87.27%,92.68%,and 95.08%,respectively,thus validating the eff ectiveness of the algorithm presented in this paper.展开更多
基金supported by the CNPC Advanced Fundamental Research Projects(No.2023ycq06).
文摘Well logging curves serve as indicators of strata attribute changes and are frequently utilized for stratigraphic analysis and comparison.Deep learning,known for its robust feature extraction capabilities,has seen continuous adoption by scholars in the realm of well logging stratigraphic correlation tasks.Nonetheless,current deep learning algorithms often struggle to accurately capture feature changes occurring at layer boundaries within the curves.Moreover,when faced with data imbalance issues,neural networks encounter challenges in accurately modeling the one-hot encoded curve stratifi cation positions,resulting in signifi cant deviations between predicted and actual stratifi cation positions.Addressing these challenges,this study proposes a novel well logging curve stratigraphic comparison algorithm based on uniformly distributed soft labels.In the training phase,a label smoothing loss function is introduced to comprehensively account for the substantial loss stemming from data imbalance and to consider the similarity between diff erent layer data.Concurrently,spatial attention and channel attention mechanisms are incorporated into the shallow and deep encoder stages of U²-Net,respectively,to better focus on changes in stratifi cation positions.During the prediction phase,an optimized confi dence threshold algorithm is proposed to constrain stratifi cation results and solve the problem of reduced prediction accuracy because of occasional layer repetition.The proposed method is applied to real-world well logging data in oil fi elds.Quantitative evaluation results demonstrate that within error ranges of 1,2,and 3 m,the accuracy of well logging curve stratigraphic division reaches 87.27%,92.68%,and 95.08%,respectively,thus validating the eff ectiveness of the algorithm presented in this paper.