Density functional theory calculations were performed to study the structures and relative stability of the gadolinium complexes, Gd(H2O)n^3+ (n=8,9), in vacuo and in aqueous solution. The polarizable continuum m...Density functional theory calculations were performed to study the structures and relative stability of the gadolinium complexes, Gd(H2O)n^3+ (n=8,9), in vacuo and in aqueous solution. The polarizable continuum model with various radii for the solute cavity was used to study the relative stability in aqueous solution. The calculated molecular geometries for n=8 and 9 obtained in vacuo are consistent with those observed in experiments. It was found that while the nona-aqua complex is favored in the gas phase, in aqueous solution the octa-aqua conformation is preferred. This result, independent of the types of cavities employed, is in agreement with the experimental observation. The reliability of the present calculation was also addressed by comparing the calculated and experimental free energy of hydration, which revealed that the UA0, UAHF, and UAKS cavities are most appropriate when only the first solvation shell is treated explicitly.展开更多
A 13-day feeding trial was carried out to evaluate the effectiveness of a microbound diet for rearing the larvae of Chinese shrimp Fenneropenaeus chinensis in comparison with the live foods that consist of Isochrysis ...A 13-day feeding trial was carried out to evaluate the effectiveness of a microbound diet for rearing the larvae of Chinese shrimp Fenneropenaeus chinensis in comparison with the live foods that consist of Isochrysis galbana, Chlorella vulgaris, Tetraselrnis chuii, rotifer (Brachionus plicatilis) and Arternia sp. Larvae of 0 to 13d post-hatch (dph) were reared in a temperature-controlled semi-open culture system and stocked at a density of 100 larvae L^-1 in tanks, each containing 50 L sterilized seawater with salinity 30-32. Larvae were manually fed either the live foods or the microbound diet 6 times per day. At 13 dph, the growth of the larvae fed on the microbound diet was approximately 84% of that fed on the live foods. The survival rate of the larvae fed on the microbound diet was 44.29% at 13dph, which was not significantly different from that of larvae fed on live foods (63.55%). The body length and development index (DI) of the larvae fed on the microbound diet were always lower than those of larvae fed on live foods. However, the differences reached significant levels only at 11 and 13 dph (P〈 0.05). The mean dry weight loss of the microbound diet was 9.2% after 90 min immersion in seawater, indicating that this diet has a good water stability. The microbound diet contains 52.23% crude protein and 10.27% lipid and is easy to prepare. These characteristics of the diet suggest good potentials for its successful use in the larviculture of other penaeid and fish species.展开更多
An analysis of the instability in the Taylor-Couette flow of fiber suspensions with respect to the non-axisymmetric disturbances was performed. The constitutive model proposed by Ericksen was used to represent the rol...An analysis of the instability in the Taylor-Couette flow of fiber suspensions with respect to the non-axisymmetric disturbances was performed. The constitutive model proposed by Ericksen was used to represent the role of fiber additives on the stress tensor. The generalized eigenvalue equation governing the hydrodynamic stability of the system was solved using a direct numerical procedure. The results showed that the fiber additives can suppress the instability of the flow. At the same time, the non-axisymmetric disturbance is the preferred mode that makes the fiber suspensions unstable when the ratio of the angular ve- locity of the outer cylinder to that of the inner cylinder is a large negative number.展开更多
Indoor humidity directly impacts the health of indoor populations. In arid and semi-arid cities, the buildings indoor humidity is typically higher than outdoors, and the presence of water vapor results from water diss...Indoor humidity directly impacts the health of indoor populations. In arid and semi-arid cities, the buildings indoor humidity is typically higher than outdoors, and the presence of water vapor results from water dissipation inside the buildings. Few studies have explored indoor humidity features and vapor distribution or evaluated water dissipation inside buildings. This study examined temperature and relative humidity (RH) changes in typical residential and office buildings. The results indicate a relatively stable temperature with vary range of-4-1~C and a fluctuation RH trend which is similarly to that of water use. We proposed the concept of building water dissipation to describe the transformation of liquid water into gaseous water during water consumption and to develop a building water dissipation model that involves two main parameters: indoor population and total floor area. The simulated values were verified by measuring water consumption and water drainage, and the resulting simulation errors were lower for residential than for office buildings. The results indicate that bathroom vapor accounts for 70% of water dissipation in residential buildings. We conclude that indoor humidity was largely a result of water dissipation indoors, and building water dissipation should be considered in urban hydrological cycles.展开更多
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.10804001, No.10674002, and No.20773024), the National High Technology Research and Development Program of China (No.2006AA09Z243-3), and the Program for Innovative Research Team in Anhui Normal University of China.
文摘Density functional theory calculations were performed to study the structures and relative stability of the gadolinium complexes, Gd(H2O)n^3+ (n=8,9), in vacuo and in aqueous solution. The polarizable continuum model with various radii for the solute cavity was used to study the relative stability in aqueous solution. The calculated molecular geometries for n=8 and 9 obtained in vacuo are consistent with those observed in experiments. It was found that while the nona-aqua complex is favored in the gas phase, in aqueous solution the octa-aqua conformation is preferred. This result, independent of the types of cavities employed, is in agreement with the experimental observation. The reliability of the present calculation was also addressed by comparing the calculated and experimental free energy of hydration, which revealed that the UA0, UAHF, and UAKS cavities are most appropriate when only the first solvation shell is treated explicitly.
基金supported by the National 863 Program(Nos.2001AA622060,2003AA622060,2004AA603610).
文摘A 13-day feeding trial was carried out to evaluate the effectiveness of a microbound diet for rearing the larvae of Chinese shrimp Fenneropenaeus chinensis in comparison with the live foods that consist of Isochrysis galbana, Chlorella vulgaris, Tetraselrnis chuii, rotifer (Brachionus plicatilis) and Arternia sp. Larvae of 0 to 13d post-hatch (dph) were reared in a temperature-controlled semi-open culture system and stocked at a density of 100 larvae L^-1 in tanks, each containing 50 L sterilized seawater with salinity 30-32. Larvae were manually fed either the live foods or the microbound diet 6 times per day. At 13 dph, the growth of the larvae fed on the microbound diet was approximately 84% of that fed on the live foods. The survival rate of the larvae fed on the microbound diet was 44.29% at 13dph, which was not significantly different from that of larvae fed on live foods (63.55%). The body length and development index (DI) of the larvae fed on the microbound diet were always lower than those of larvae fed on live foods. However, the differences reached significant levels only at 11 and 13 dph (P〈 0.05). The mean dry weight loss of the microbound diet was 9.2% after 90 min immersion in seawater, indicating that this diet has a good water stability. The microbound diet contains 52.23% crude protein and 10.27% lipid and is easy to prepare. These characteristics of the diet suggest good potentials for its successful use in the larviculture of other penaeid and fish species.
基金Project (No. 10372090) supported by the National Natural ScienceFoundation of China
文摘An analysis of the instability in the Taylor-Couette flow of fiber suspensions with respect to the non-axisymmetric disturbances was performed. The constitutive model proposed by Ericksen was used to represent the role of fiber additives on the stress tensor. The generalized eigenvalue equation governing the hydrodynamic stability of the system was solved using a direct numerical procedure. The results showed that the fiber additives can suppress the instability of the flow. At the same time, the non-axisymmetric disturbance is the preferred mode that makes the fiber suspensions unstable when the ratio of the angular ve- locity of the outer cylinder to that of the inner cylinder is a large negative number.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFC0401401)the National Natural Science Foundation of China(Grant Nos.51522907&51739011)the Research Fund of the State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research(Grant No.2017ZY02)
文摘Indoor humidity directly impacts the health of indoor populations. In arid and semi-arid cities, the buildings indoor humidity is typically higher than outdoors, and the presence of water vapor results from water dissipation inside the buildings. Few studies have explored indoor humidity features and vapor distribution or evaluated water dissipation inside buildings. This study examined temperature and relative humidity (RH) changes in typical residential and office buildings. The results indicate a relatively stable temperature with vary range of-4-1~C and a fluctuation RH trend which is similarly to that of water use. We proposed the concept of building water dissipation to describe the transformation of liquid water into gaseous water during water consumption and to develop a building water dissipation model that involves two main parameters: indoor population and total floor area. The simulated values were verified by measuring water consumption and water drainage, and the resulting simulation errors were lower for residential than for office buildings. The results indicate that bathroom vapor accounts for 70% of water dissipation in residential buildings. We conclude that indoor humidity was largely a result of water dissipation indoors, and building water dissipation should be considered in urban hydrological cycles.