There are numerous lakes on the Tibetan Plateau(TP),but the role of lake temperature in precipitation over the TP remains unclear.Here the Weather Research and Forecasting(WRF) model was used to detect the impact of l...There are numerous lakes on the Tibetan Plateau(TP),but the role of lake temperature in precipitation over the TP remains unclear.Here the Weather Research and Forecasting(WRF) model was used to detect the impact of lakes on summer rainfall.Three test cases were used to evaluate the effect of lakes surface temperature(LSTs) on precipitation variability.The three cases used different methods to determine initial LSTs,including using sea surface temperature data(SST),the WRF inland water module(avg_tsfc),and a lake model.Results show that when precipitation was stimulated over the TP,LSTs cannot be initialized using SST,which led to large discrepancies of precipitation.Compared with the simulations,the simulated precipitation were improved obviously with LSTs using avg_tsfc,indicating that LSTs have an considerable influence on determining precipitation over the TP.Due to a lack of observational data,the lake scheme does not improve on rainfall simulation,but does effectively simulate precipitation pattern over lakes,such as rainfall over the lakes was dominated by convection during the nighttime.Though the simulated precipitation using SST to initialize LSTs caused largediscrepancies,it suggested that precipitation increase especially convective precipitation with increase in LSTs,which confirmed that the moisture from lakes cannot be neglected over the TP.Generally,it was necessary to monitor the LSTs for accurate weather and climate prediction over the TP.展开更多
基金The National Natural Science Foundation of China(Grant Nos.41401226 and 41190080)the China Postdoctoral Science Foundation(Grant No.2015M570865) joint support this work
文摘There are numerous lakes on the Tibetan Plateau(TP),but the role of lake temperature in precipitation over the TP remains unclear.Here the Weather Research and Forecasting(WRF) model was used to detect the impact of lakes on summer rainfall.Three test cases were used to evaluate the effect of lakes surface temperature(LSTs) on precipitation variability.The three cases used different methods to determine initial LSTs,including using sea surface temperature data(SST),the WRF inland water module(avg_tsfc),and a lake model.Results show that when precipitation was stimulated over the TP,LSTs cannot be initialized using SST,which led to large discrepancies of precipitation.Compared with the simulations,the simulated precipitation were improved obviously with LSTs using avg_tsfc,indicating that LSTs have an considerable influence on determining precipitation over the TP.Due to a lack of observational data,the lake scheme does not improve on rainfall simulation,but does effectively simulate precipitation pattern over lakes,such as rainfall over the lakes was dominated by convection during the nighttime.Though the simulated precipitation using SST to initialize LSTs caused largediscrepancies,it suggested that precipitation increase especially convective precipitation with increase in LSTs,which confirmed that the moisture from lakes cannot be neglected over the TP.Generally,it was necessary to monitor the LSTs for accurate weather and climate prediction over the TP.