An experimental study was conducted to investigate the fouling process of calcium carbonate on the heat transfer surface, during forced convective heat transfer. The dynamic monitoring apparatus of fouling resistance ...An experimental study was conducted to investigate the fouling process of calcium carbonate on the heat transfer surface, during forced convective heat transfer. The dynamic monitoring apparatus of fouling resistance was set up for the present experiments. The fouling behavio(s were examined under different factors including fluid velocity, hardness,alkalinity, solution temperature, and wall temperature. Asymptotic fouling curves varying with time were obtained. The fouling rate and asymptotic fouling resistance increased and the induction periods were shortened with the fluid velocity decreasing, hardness andalkalinity increasing, and solution temperature and heat transfer surface temperature increasing. Thecomponents of fouling that formed on the heat transfer surface included crystallization fouling and particulate fouling. The thermal performance parameter of fouling,ρfhf, varied from 380 to 2600 kg·W·(m^4·K)^-1, increasing with growing velocity and decreasing solution temperature, hardness or alkalinity. Furthermore, the thermal conductivity of fouling, λf, varied from 1.7 to 2.2 W·(m·K)^-1 .展开更多
The continuing increase in IC (Integrated Circuit) power levels and microelectronics packaging densities has resulted in the need for detailed considerations of the heat sink design for integrated circuits. One of t...The continuing increase in IC (Integrated Circuit) power levels and microelectronics packaging densities has resulted in the need for detailed considerations of the heat sink design for integrated circuits. One of the major components in the heat sink is the heat spreader which must be designed to effectively conduct the heat dissipated from the chip to a system of fins or extended surfaces for convective heat transfer to a flow of coolant. The heat spreader design must provide the capability to dissipate the thermal energy generated by the chip. However, the design of the heat spreader is also dependent on the convection characteristics of the fins within the heat sink, as well the material and geometry of the heat spreader. This paper focuses on the optimization of heat spreaders in a heat sink for safe and efficient performance of electronic circuits. The results of the study show that, for air-cooled electronics, the convective effects may dominate the thermal transport performance of the heat spreader in the heat sink.展开更多
The convective heat transfer coefficient and surface emissivity before and after flame occurrence on a wood specimen surface and the flame heat flux were estimated using the repulsive particle swarm optimization algor...The convective heat transfer coefficient and surface emissivity before and after flame occurrence on a wood specimen surface and the flame heat flux were estimated using the repulsive particle swarm optimization algorithm and cone heater test results. The cone heater specified in the ISO 5660 standards was used, and six cone heater heat fluxes were tested. Preservative-treated Douglas fir 21 mm in thickness was used as the wood specimen in the tests. This study confirmed that the surface temperature of the specimen, which was calculated using the convective heat transfer coefficient, surface emissivity and flame heat flux on the wood specimen by a repulsive particle swarm optimization algorithm, was consistent with the measured temperature. Considering the measurement errors in the surface temperature of the specimen, the applicability of the optimization method considered in this study was evaluated.展开更多
基金the State Key Development Program for Basic Research of China(G2007CB206904)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China(00084)the Doctoral Fund of Beijing University of Technology(X004016200801)
文摘An experimental study was conducted to investigate the fouling process of calcium carbonate on the heat transfer surface, during forced convective heat transfer. The dynamic monitoring apparatus of fouling resistance was set up for the present experiments. The fouling behavio(s were examined under different factors including fluid velocity, hardness,alkalinity, solution temperature, and wall temperature. Asymptotic fouling curves varying with time were obtained. The fouling rate and asymptotic fouling resistance increased and the induction periods were shortened with the fluid velocity decreasing, hardness andalkalinity increasing, and solution temperature and heat transfer surface temperature increasing. Thecomponents of fouling that formed on the heat transfer surface included crystallization fouling and particulate fouling. The thermal performance parameter of fouling,ρfhf, varied from 380 to 2600 kg·W·(m^4·K)^-1, increasing with growing velocity and decreasing solution temperature, hardness or alkalinity. Furthermore, the thermal conductivity of fouling, λf, varied from 1.7 to 2.2 W·(m·K)^-1 .
文摘The continuing increase in IC (Integrated Circuit) power levels and microelectronics packaging densities has resulted in the need for detailed considerations of the heat sink design for integrated circuits. One of the major components in the heat sink is the heat spreader which must be designed to effectively conduct the heat dissipated from the chip to a system of fins or extended surfaces for convective heat transfer to a flow of coolant. The heat spreader design must provide the capability to dissipate the thermal energy generated by the chip. However, the design of the heat spreader is also dependent on the convection characteristics of the fins within the heat sink, as well the material and geometry of the heat spreader. This paper focuses on the optimization of heat spreaders in a heat sink for safe and efficient performance of electronic circuits. The results of the study show that, for air-cooled electronics, the convective effects may dominate the thermal transport performance of the heat spreader in the heat sink.
基金support from the research fund of the National Emergency Management Agency.(NEMA- Infra-2014-103)
文摘The convective heat transfer coefficient and surface emissivity before and after flame occurrence on a wood specimen surface and the flame heat flux were estimated using the repulsive particle swarm optimization algorithm and cone heater test results. The cone heater specified in the ISO 5660 standards was used, and six cone heater heat fluxes were tested. Preservative-treated Douglas fir 21 mm in thickness was used as the wood specimen in the tests. This study confirmed that the surface temperature of the specimen, which was calculated using the convective heat transfer coefficient, surface emissivity and flame heat flux on the wood specimen by a repulsive particle swarm optimization algorithm, was consistent with the measured temperature. Considering the measurement errors in the surface temperature of the specimen, the applicability of the optimization method considered in this study was evaluated.