The characteristics of tropical cyclone(TC) tilts under vertically varying background flows were preliminarily examined in this study based on numerical simulations with the Tropical Cyclone Model version 4(TCM4).The ...The characteristics of tropical cyclone(TC) tilts under vertically varying background flows were preliminarily examined in this study based on numerical simulations with the Tropical Cyclone Model version 4(TCM4).The tilt magnitudes presented a linearly decreasing tendency in the simulation with the environmental wind speed vertically varying throughout the troposphere and in the simulation with the vertical wind shear concentrated in the lower troposphere,while the vortex tilt showed a linearly increasing tendency in magnitude in the simulation where the vertical shear was concentrated in the upper troposphere.The change in tilt magnitude was found to be related to the evolution of the penetration depth near the eyewall.When the shear was concentrated in the lower troposphere,the vortex tended to tilt downshear right during the early integration and underwent more precession processes.When the shear was concentrated in the upper troposphere,the vortex rapidly tilted downshear left during the early simulation and vortex precession was less frequently observed.The storms simulated in all experiments were finally in downshear-left tilt equilibrium.展开更多
This study presents the LES (large eddy simulation) of forced convection in laminar and two dimensional turbulent flows when the flow reaches the steady state. The main purpose is the evaluation of a developed numer...This study presents the LES (large eddy simulation) of forced convection in laminar and two dimensional turbulent flows when the flow reaches the steady state. The main purpose is the evaluation of a developed numerical methodology for the simulation of forced convection flows at various Reynolds numbers (100 _〈 Rex 〈_ 10,000) and for a fixed Prandtl number (Pr = 1.0). The hexahedral eight-node FEM (finite element method) with an explicit Taylor-Galerkin scheme is used to obtain the numerical solutions of the conservation equations of mass, momentum and energy. The Smagorinsky model is employed for the sub-grid treatment. The time-averaged velocity and temperature profiles are compared with results of literature and a CFD (computational fluid dynamics) package based on finite volume method, leading to a highest deviation of nearly 6%. Moreover, characteristics of the forced convection flows are properly obtained, e.g., the effect of the Reynolds number over the multiplicity of scales.展开更多
The present work experimentally and numerically investigates the local heat transfer enhancement induced by a piezoelectric fan interacting with a cross flow in a local heated channel.The piezoelectric fan is placed a...The present work experimentally and numerically investigates the local heat transfer enhancement induced by a piezoelectric fan interacting with a cross flow in a local heated channel.The piezoelectric fan is placed along the flow direction and tested under different amplitudes and flow rates.In the simulations,a spring-based smoothing method and a local remeshing technique are used to handle the moving boundary problems.Hybrid mesh is used to reduce the size of dynamic mesh domain and to improve computational efficiency.The experimental and numerical values of the time-averaged mean Nusselt number are found to be in good agreement,with deviations of less than 10%.The experimental result shows that the heat transfer performance of the heated surfaces is substantially enhanced with a vibrating piezoelectric fan.The numerical result shows that the heat transfer enhancement comes from the strong longitudinal vortex pairs generated by the piezoelectric fan,which significantly promote heat exchange between the main flow and the near-wall flow.In the case of a=0.66(a is the dimensionless amplitude)and Re=1820,the enhancement ratio of the time-averaged mean Nusselt number reaches 119.9%.展开更多
A mesoscale weather research and forecasting(WRF)model was used to simulate a cold vortex that developed over Northeast China during June 19–23,2010.The simulation used high vertical resolution to reproduce the key f...A mesoscale weather research and forecasting(WRF)model was used to simulate a cold vortex that developed over Northeast China during June 19–23,2010.The simulation used high vertical resolution to reproduce the key features of the cold vortex development.Characteristics of the associated stratosphere-troposphere exchange(STE),specifically the spatiotemporal distribution of the cross-tropopause mass flux(CTF),were investigated using the Wei formula.The simulation results showed that the net mass exchange induced by the cold vortex was controlled by stratosphere-to-troposphere transport(STT)processes.In the pre-formation stage of the cold vortex(i.e.,the development of the trough and ridge),active exchange was evident.Over the lifecycle of the cold vortex,STT processes prevailed at the rear of the trough and moving vortex,whereas troposphere-to-stratosphere transport(TST)processes prevailed at the front end.This spatial pattern was caused by temporal fluctuations of the tropopause.However,because of the cancellation of the upward flux by the downward flux,the contribution of the tropopause fluctuation term to the net mass exchange was only minor.In this case,horizontal motion dominated the net mass exchange.The time evolution of the CTF exhibited three characteristics:(1)the predominance of the STT during the pre-formation stage;(2)the formation and development of the cold vortex,in which the CTF varied in a fluctuating pattern from TST to STT to TST;and(3)the prevalence of the STT during the decay stage.展开更多
Two-dimensional turbulent mixed convection-surface radiation interaction phenomenon in a back-wall-heated open square cavity is numerically investigated. The flow medium is air, and the turbulence model used is the Lo...Two-dimensional turbulent mixed convection-surface radiation interaction phenomenon in a back-wall-heated open square cavity is numerically investigated. The flow medium is air, and the turbulence model used is the Low-Reynolds-Number κ-ε Scheme. Calculations have been performed for Grashof numbers Gr up to 10^(10). And the Richardson number Ri covers a range of 4×10^(-3)-45. It is shown that within a rather extensive range of Ri, the effects of radiation on the heat transfer and fluid flow in the cavity are significant, should not be neglected and become stronger with the increase of Ri and Gr.展开更多
The Random Vortex Method extended to an axisymmetrical flow is used in the study of the flow field inside circular geometries characterized by an axis of symmetry. The method uses a formulation in vorticity variables ...The Random Vortex Method extended to an axisymmetrical flow is used in the study of the flow field inside circular geometries characterized by an axis of symmetry. The method uses a formulation in vorticity variables expressed in cylindrical coordinates with e assumption of all axisymmetrical flow.The algorithm uses a semi-Lagrangian approach for the simulation of the vortex dynamics. In this paper, the algorithm of the computational method, along with a description of the method of vorticity generation on solid walls, are presented in detail.展开更多
The Random Vortex Method extended to an azisymmetrical flow is used in the study of the flow field inside pipes incorporating an orifice plate with different contraction ratios and different inlet velocity profiles. T...The Random Vortex Method extended to an azisymmetrical flow is used in the study of the flow field inside pipes incorporating an orifice plate with different contraction ratios and different inlet velocity profiles. Three test-cases, each having experimental measurements available in the literature, are studied. In particular, instantaneous and average velocity fields along with the turbulent statistics for high Reynolds number flows are computed and compared to the corresponding experimental results.These comparisons show the ability and the citations of the method. The results of the numerical simulations are used in the physical analysis of the flow fields and thus allow for a better understanding of the dynamics of the flow in pipes incorporating an orifice plate.展开更多
The coupling effects of rib heights and fluid properties on turbulent convective heat transfer of kerosene flow through the rectangular duct on the ribbed bottom wall are studied numerically in this paper.The numerica...The coupling effects of rib heights and fluid properties on turbulent convective heat transfer of kerosene flow through the rectangular duct on the ribbed bottom wall are studied numerically in this paper.The numerical simulation is based on the ten components surrogate model of kerosene and the Reynolds average method combined with the re-normalized group(RNG)k-εturbulence model.The turbulent vortex structures and heat transfer characteristics of kerosene flowing over rectangular ribs of different heights are obtained.The results show that three dimensional vortices are generated by the ribs,and the vortices alter local flow significantly,leading to both enhanced and reduced convective heat transfer at different locations near the ribs.In addition,it is found that with the increase of rib height,the average Nusselt number and the wall friction factor on the ribbed wall also increase.For the present study,the maximum heat transfer enhancement rate of kerosene flow is 72.16%,and the ratio of rib-to-duct height is 0.75.展开更多
In many engineering applications,heat transfer enhancement techniques are of vital importance in order to ensure reliable thermal designs of convective heat transfer applications.This study examines experimentally the...In many engineering applications,heat transfer enhancement techniques are of vital importance in order to ensure reliable thermal designs of convective heat transfer applications.This study examines experimentally the heat transfer characteristics on the base plate around various surface mounted obstacles.Local convection coefficients are evaluated in the vicinity of each individual protruding body with great spatial resolution using the transient liquid crystal technique.Five different obstacles of constant height-to-hydraulic diameter ratio(~1.3) are considered.These include:a cylinder,a square,a triangle,a diamond and a vortex generator of delta wing shape design.The experiments were carried out over a range of freestream Reynolds numbers,based on the hydraulic diameter of each obstacle,varying from 4,000 to 13,000.The results indicate a negligible effect of the flow speed on the heat transfer topological structure and a considerable effect of the obstacle geometry on the level and distribution of heat transfer enhancement.展开更多
基金jointly supported by the National(Key)Basic Research and Development(973)Program of China(No.2015CB452803)the National Natural Science Foundation of China(Nos.41475058 and 41375068)+1 种基金the Open Project of the State Key Laboratory of Severe Weather(No.2016LASW-B08)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP)
文摘The characteristics of tropical cyclone(TC) tilts under vertically varying background flows were preliminarily examined in this study based on numerical simulations with the Tropical Cyclone Model version 4(TCM4).The tilt magnitudes presented a linearly decreasing tendency in the simulation with the environmental wind speed vertically varying throughout the troposphere and in the simulation with the vertical wind shear concentrated in the lower troposphere,while the vortex tilt showed a linearly increasing tendency in magnitude in the simulation where the vertical shear was concentrated in the upper troposphere.The change in tilt magnitude was found to be related to the evolution of the penetration depth near the eyewall.When the shear was concentrated in the lower troposphere,the vortex tended to tilt downshear right during the early integration and underwent more precession processes.When the shear was concentrated in the upper troposphere,the vortex rapidly tilted downshear left during the early simulation and vortex precession was less frequently observed.The storms simulated in all experiments were finally in downshear-left tilt equilibrium.
文摘This study presents the LES (large eddy simulation) of forced convection in laminar and two dimensional turbulent flows when the flow reaches the steady state. The main purpose is the evaluation of a developed numerical methodology for the simulation of forced convection flows at various Reynolds numbers (100 _〈 Rex 〈_ 10,000) and for a fixed Prandtl number (Pr = 1.0). The hexahedral eight-node FEM (finite element method) with an explicit Taylor-Galerkin scheme is used to obtain the numerical solutions of the conservation equations of mass, momentum and energy. The Smagorinsky model is employed for the sub-grid treatment. The time-averaged velocity and temperature profiles are compared with results of literature and a CFD (computational fluid dynamics) package based on finite volume method, leading to a highest deviation of nearly 6%. Moreover, characteristics of the forced convection flows are properly obtained, e.g., the effect of the Reynolds number over the multiplicity of scales.
基金Project supported by the National Natural Science Foundation of China(Nos.51575487 , 51875521)。
文摘The present work experimentally and numerically investigates the local heat transfer enhancement induced by a piezoelectric fan interacting with a cross flow in a local heated channel.The piezoelectric fan is placed along the flow direction and tested under different amplitudes and flow rates.In the simulations,a spring-based smoothing method and a local remeshing technique are used to handle the moving boundary problems.Hybrid mesh is used to reduce the size of dynamic mesh domain and to improve computational efficiency.The experimental and numerical values of the time-averaged mean Nusselt number are found to be in good agreement,with deviations of less than 10%.The experimental result shows that the heat transfer performance of the heated surfaces is substantially enhanced with a vibrating piezoelectric fan.The numerical result shows that the heat transfer enhancement comes from the strong longitudinal vortex pairs generated by the piezoelectric fan,which significantly promote heat exchange between the main flow and the near-wall flow.In the case of a=0.66(a is the dimensionless amplitude)and Re=1820,the enhancement ratio of the time-averaged mean Nusselt number reaches 119.9%.
基金the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 41305038)
文摘A mesoscale weather research and forecasting(WRF)model was used to simulate a cold vortex that developed over Northeast China during June 19–23,2010.The simulation used high vertical resolution to reproduce the key features of the cold vortex development.Characteristics of the associated stratosphere-troposphere exchange(STE),specifically the spatiotemporal distribution of the cross-tropopause mass flux(CTF),were investigated using the Wei formula.The simulation results showed that the net mass exchange induced by the cold vortex was controlled by stratosphere-to-troposphere transport(STT)processes.In the pre-formation stage of the cold vortex(i.e.,the development of the trough and ridge),active exchange was evident.Over the lifecycle of the cold vortex,STT processes prevailed at the rear of the trough and moving vortex,whereas troposphere-to-stratosphere transport(TST)processes prevailed at the front end.This spatial pattern was caused by temporal fluctuations of the tropopause.However,because of the cancellation of the upward flux by the downward flux,the contribution of the tropopause fluctuation term to the net mass exchange was only minor.In this case,horizontal motion dominated the net mass exchange.The time evolution of the CTF exhibited three characteristics:(1)the predominance of the STT during the pre-formation stage;(2)the formation and development of the cold vortex,in which the CTF varied in a fluctuating pattern from TST to STT to TST;and(3)the prevalence of the STT during the decay stage.
文摘Two-dimensional turbulent mixed convection-surface radiation interaction phenomenon in a back-wall-heated open square cavity is numerically investigated. The flow medium is air, and the turbulence model used is the Low-Reynolds-Number κ-ε Scheme. Calculations have been performed for Grashof numbers Gr up to 10^(10). And the Richardson number Ri covers a range of 4×10^(-3)-45. It is shown that within a rather extensive range of Ri, the effects of radiation on the heat transfer and fluid flow in the cavity are significant, should not be neglected and become stronger with the increase of Ri and Gr.
文摘The Random Vortex Method extended to an axisymmetrical flow is used in the study of the flow field inside circular geometries characterized by an axis of symmetry. The method uses a formulation in vorticity variables expressed in cylindrical coordinates with e assumption of all axisymmetrical flow.The algorithm uses a semi-Lagrangian approach for the simulation of the vortex dynamics. In this paper, the algorithm of the computational method, along with a description of the method of vorticity generation on solid walls, are presented in detail.
文摘The Random Vortex Method extended to an azisymmetrical flow is used in the study of the flow field inside pipes incorporating an orifice plate with different contraction ratios and different inlet velocity profiles. Three test-cases, each having experimental measurements available in the literature, are studied. In particular, instantaneous and average velocity fields along with the turbulent statistics for high Reynolds number flows are computed and compared to the corresponding experimental results.These comparisons show the ability and the citations of the method. The results of the numerical simulations are used in the physical analysis of the flow fields and thus allow for a better understanding of the dynamics of the flow in pipes incorporating an orifice plate.
基金supported by the National Natural Science Foundation of China(Grant Nos.12072351 and 11872367).
文摘The coupling effects of rib heights and fluid properties on turbulent convective heat transfer of kerosene flow through the rectangular duct on the ribbed bottom wall are studied numerically in this paper.The numerical simulation is based on the ten components surrogate model of kerosene and the Reynolds average method combined with the re-normalized group(RNG)k-εturbulence model.The turbulent vortex structures and heat transfer characteristics of kerosene flowing over rectangular ribs of different heights are obtained.The results show that three dimensional vortices are generated by the ribs,and the vortices alter local flow significantly,leading to both enhanced and reduced convective heat transfer at different locations near the ribs.In addition,it is found that with the increase of rib height,the average Nusselt number and the wall friction factor on the ribbed wall also increase.For the present study,the maximum heat transfer enhancement rate of kerosene flow is 72.16%,and the ratio of rib-to-duct height is 0.75.
文摘In many engineering applications,heat transfer enhancement techniques are of vital importance in order to ensure reliable thermal designs of convective heat transfer applications.This study examines experimentally the heat transfer characteristics on the base plate around various surface mounted obstacles.Local convection coefficients are evaluated in the vicinity of each individual protruding body with great spatial resolution using the transient liquid crystal technique.Five different obstacles of constant height-to-hydraulic diameter ratio(~1.3) are considered.These include:a cylinder,a square,a triangle,a diamond and a vortex generator of delta wing shape design.The experiments were carried out over a range of freestream Reynolds numbers,based on the hydraulic diameter of each obstacle,varying from 4,000 to 13,000.The results indicate a negligible effect of the flow speed on the heat transfer topological structure and a considerable effect of the obstacle geometry on the level and distribution of heat transfer enhancement.