A system of m (≥2) linear convection-diffusion two-point boundary value problems is examined,where the diffusion term in each equation is multiplied by a small parameterεand the equations are coupled through their c...A system of m (≥2) linear convection-diffusion two-point boundary value problems is examined,where the diffusion term in each equation is multiplied by a small parameterεand the equations are coupled through their convective and reactive terms via matrices B and A respectively.This system is in general singularly perturbed. Unlike the case of a single equation,it does not satisfy a conventional maximum princi- ple.Certain hypotheses are placed on the coupling matrices B and A that ensure exis- tence and uniqueness of a solution to the system and also permit boundary layers in the components of this solution at only one endpoint of the domain;these hypotheses can be regarded as a strong form of diagonal dominance of B.This solution is decomposed into a sum of regular and layer components.Bounds are established on these compo- nents and their derivatives to show explicitly their dependence on the small parameterε.Finally,numerical methods consisting of upwinding on piecewise-uniform Shishkin meshes are proved to yield numerical solutions that are essentially first-order conver- gent,uniformly inε,to the true solution in the discrete maximum norm.Numerical results on Shishkin meshes are presented to support these theoretical bounds.展开更多
In this paper, we propose a non-autonomous convection-reaction diffusion system (CDI) with a nonlinear reaction source function. This model refers to the quantification and the distribution of antibiotic resistant b...In this paper, we propose a non-autonomous convection-reaction diffusion system (CDI) with a nonlinear reaction source function. This model refers to the quantification and the distribution of antibiotic resistant bacteria (ARB) in a river. The main contributions of this paper are: (i) the determination of the limit set of the system by applying the semigroups theory, it is shown that it is reduced to the solutions of the associated elliptic system (CDI)e, (ii) sufficient conditions for the existence of a positive solution of (CDI)e based on the Leray-Schauder's degree theory. Numerical simulations which support our theoretical analysis are also given.展开更多
文摘A system of m (≥2) linear convection-diffusion two-point boundary value problems is examined,where the diffusion term in each equation is multiplied by a small parameterεand the equations are coupled through their convective and reactive terms via matrices B and A respectively.This system is in general singularly perturbed. Unlike the case of a single equation,it does not satisfy a conventional maximum princi- ple.Certain hypotheses are placed on the coupling matrices B and A that ensure exis- tence and uniqueness of a solution to the system and also permit boundary layers in the components of this solution at only one endpoint of the domain;these hypotheses can be regarded as a strong form of diagonal dominance of B.This solution is decomposed into a sum of regular and layer components.Bounds are established on these compo- nents and their derivatives to show explicitly their dependence on the small parameterε.Finally,numerical methods consisting of upwinding on piecewise-uniform Shishkin meshes are proved to yield numerical solutions that are essentially first-order conver- gent,uniformly inε,to the true solution in the discrete maximum norm.Numerical results on Shishkin meshes are presented to support these theoretical bounds.
文摘In this paper, we propose a non-autonomous convection-reaction diffusion system (CDI) with a nonlinear reaction source function. This model refers to the quantification and the distribution of antibiotic resistant bacteria (ARB) in a river. The main contributions of this paper are: (i) the determination of the limit set of the system by applying the semigroups theory, it is shown that it is reduced to the solutions of the associated elliptic system (CDI)e, (ii) sufficient conditions for the existence of a positive solution of (CDI)e based on the Leray-Schauder's degree theory. Numerical simulations which support our theoretical analysis are also given.