The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemi...The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [ 1 ]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta- neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob- lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application oflSADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality.展开更多
The anti-polar solvent technique is an effec- tive way to improve the film quality in a perovskite solar cell. In this work, we reveal the reason why chloroben- zene (CBZ) plays an important role in controlling the ...The anti-polar solvent technique is an effec- tive way to improve the film quality in a perovskite solar cell. In this work, we reveal the reason why chloroben- zene (CBZ) plays an important role in controlling the crystallization process. By investigating the formation of intermediate phases in the precursor solution, we observed that the CH3NH3I (MAI)-PbI2-dimethylformamide (DMF) or MAI-PbI2-dimethylsulphoxide (DMSO) adducts have not yet formed until washed with non-polar solvent. The accelerated formation of intermediate phase yields high crystalline perovskite layers. Rapid solvent evaporation and retarded perovskite crystallization in one-step method are efficient to obtain high-quality perovskite films. Conse- quently, MAI-PbI2-DMSO intermediate shows neat rod-like structure with high crystallinity, which eventually transforms extremely dense and uniform perovskite films.展开更多
基金Supported by the Shanghai Second Polytechnic University Key Discipline Construction-Control Theory & Control Engineering(No.XXKPY1609)the National Natural Science Foundation of China(61422303)+1 种基金Shanghai Talent Development Funding(H200-2R-15111)2017 Shanghai Second Polytechnic University Cultivation Research Program of Young Teachers(02)
文摘The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [ 1 ]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta- neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob- lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application oflSADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality.
基金supported by the National Basic Research Program of China (2016YFA0202400 and 2015CB932200)the National Natural Science Foundation of China (21403247)+2 种基金the External Cooperation Program of BIC, Distinguished Youth Foundation of Anhui Province (1708085J09)Chinese Academy of Sciences (GJHZ1607)STS project of Chinese Academy of Sciences (KFJ-SW-STS-152)
文摘The anti-polar solvent technique is an effec- tive way to improve the film quality in a perovskite solar cell. In this work, we reveal the reason why chloroben- zene (CBZ) plays an important role in controlling the crystallization process. By investigating the formation of intermediate phases in the precursor solution, we observed that the CH3NH3I (MAI)-PbI2-dimethylformamide (DMF) or MAI-PbI2-dimethylsulphoxide (DMSO) adducts have not yet formed until washed with non-polar solvent. The accelerated formation of intermediate phase yields high crystalline perovskite layers. Rapid solvent evaporation and retarded perovskite crystallization in one-step method are efficient to obtain high-quality perovskite films. Conse- quently, MAI-PbI2-DMSO intermediate shows neat rod-like structure with high crystallinity, which eventually transforms extremely dense and uniform perovskite films.