Hedysarum laeve Maxim. (Leguminosae) is one of the major species used frequently in revegetation of dune_field in the sandlands of the northern part of China by means of aerial sowing. Seedlings of the species after e...Hedysarum laeve Maxim. (Leguminosae) is one of the major species used frequently in revegetation of dune_field in the sandlands of the northern part of China by means of aerial sowing. Seedlings of the species after emergence above the sand surface may be buried in sand to various depths during its establishment in late spring and early summer. A study was made to examine the effects of sand burial at different levels of 0 (control), 33%, 67%, 100% and 133% of their shoot height, on the survivorship, growth, and biomass allocation pattern of H. laeve seedlings (one and two weeks old after emergence). When burial depth was up to 100% of their shoot height, about 70% seedlings died; and the burial at depth of 133% of their shoot height led to death of all seedlings. When seedlings was buried at depth of 33% and 67% of their shoot height, respectively, after six_week growth, their biomass of whole plant, blade, and root and relative growth rate were higher than the unburied counterparts. The seedlings in both 33% and 67% sand burial treatments did not significantly change their biomass allocation pattern comparing with the unburied ones. Furthermore, the number of leaves and shoot height of the seedlings in both 33% and 67% sand burial treatments were not significantly different from those of unburied individuals, respectively. The newly born leaves of the surviving seedlings, in 33%, 67%, and 100% burial treatments, during the period of experiment, were significantly more than those in control.展开更多
Study on shrimp miRNAs was limited and just 7 mature miRNA sequences of Marsupenaeus japonicus are deposited in mir Base database. In this study, miRNAs and their target gene candidates were computationally identified...Study on shrimp miRNAs was limited and just 7 mature miRNA sequences of Marsupenaeus japonicus are deposited in mir Base database. In this study, miRNAs and their target gene candidates were computationally identified from shrimp Penaeu s monodon and then experimentally validated. Using 39 908 expressed sequence tags(ESTs) and 21 124 genome survey sequences(GSSs) of P. monodon(pmo) as reference dataset, a comprehensive approach based on inter-species homolog search was employed to investigate the candidate miRNAs(i.e. pmo-miRNA). A total of eight miRNAs belonging to 7 families were computationally identified and five out of them were subsequently validated by PCR and sequencing. Of these, pmo-miR-4961a, pmo-miR-4961b, pmo-miR-4979 and pmo-miR-3819 were first identified from shrimps. Both the mature pmo-miRNAs and the corresponding precursors were conserved among different species. Based on perfect or near-perfect match to the target region, the target gene candidates of pmomiRNAs were predicted from 10 331 mRNA sequences of P. monodon. A total of 20 genes were predicted as the targets of pmo-miR-4961a, pmo-miR-4961b, pmo-miR-4979 and pmo-miR-6492. Experimental validation by dual luciferase reporter assay confi rmed the targeting between 3 pmo-miRNAs and one or two of their target genes, especially the pmo-miR-4979 which could significantly down-regulate the expression of target gene(JR226772). This study updates the miRNAs and their targets in P. monodon and lays a solid foundation for future RNAi study.展开更多
In this study,we considered the three-dimensional flow of a rotating viscous,incompressible electrically conducting nanofluid with oxytactic microorganisms and an insulated plate floating in the fluid.Three scenarios ...In this study,we considered the three-dimensional flow of a rotating viscous,incompressible electrically conducting nanofluid with oxytactic microorganisms and an insulated plate floating in the fluid.Three scenarios were considered in this study.The first case is when the fluid drags the plate,the second is when the plate drags the fluid and the third is when the plate floats on the fluid at the same velocity.The denser microorganisms create the bioconvection as they swim to the top following an oxygen gradient within the fluid.The velocity ratio parameter plays a key role in the dynamics for this flow.Varying the parameter below and above a critical value alters the dynamics of the flow.The Hartmann number,buoyancy ratio and radiation parameter have a reverse effect on the secondary velocity for values of the velocity ratio above and below the critical value.The Hall parameter on the other hand has a reverse effect on the primary velocity for values of velocity ratio above and below the critical value.The bioconvection Rayleigh number decreases the primary velocity.The secondary velocity increases with increasing values of the bioconvection Rayleigh number and is positive for velocity ratio values below 0.5.For values of the velocity ratio parameter above 0.5,the secondary velocity is negative for small values of bioconvection Rayleigh number and as the values increase,the flow is reversed and becomes positive.展开更多
The study reveals analytically on the 3-dimensional viscous time-dependent gyrotactic bioconvection in swirling nanofluid flow past from a rotating disk.It is known that the deformation of the disk is along the radial...The study reveals analytically on the 3-dimensional viscous time-dependent gyrotactic bioconvection in swirling nanofluid flow past from a rotating disk.It is known that the deformation of the disk is along the radial direction.In addition to that Stefan blowing is considered.The Buongiorno nanofluid model is taken care of assuming the fluid to be dilute and we find Brownian motion and thermophoresis have dominant role on nanoscale unit.The primitive mass conservation equation,radial,tangential and axial momentum,heat,nano-particle concentration and micro-organism density function are developed in a cylindrical polar coordinate system with appropriate wall(disk surface)and free stream boundary conditions.This highly nonlinear,strongly coupled system of unsteady partial differential equations is normalized with the classical von Kármán and other transformations to render the boundary value problem into an ordinary differential system.The emerging 11th order system features an extensive range of dimensionless flow parameters,i.e.,disk stretching rate,Brownian motion,thermophoresis,bioconvection Lewis number,unsteadiness parameter,ordinary Lewis number,Prandtl number,mass convective Biot number,Péclet number and Stefan blowing parameter.Solutions of the system are obtained with developed semi-analytical technique,i.e.,Adomian decomposition method.Validation of the said problem is also conducted with earlier literature computed by Runge-Kutta shooting technique.展开更多
Chiral aromatic alcohols are the key chiral building block for many important enantiopure pharmaceu-ticals. In this work,we studied asymmetric reduction of prochiral aromatic ketone to produce the corresponding chiral...Chiral aromatic alcohols are the key chiral building block for many important enantiopure pharmaceu-ticals. In this work,we studied asymmetric reduction of prochiral aromatic ketone to produce the corresponding chiral alcohol using vegetables as the biocatalyst. Acetophenone was chosen as the model substrate. The results in-dicate that acetophenone can be reduced to the corresponding chiral alcohols with high enantioselectivity by the chosen vegetables,i.e. apple(Malus pumila),carrot(Daucus carota),cucumber(Cucumis sativus),onion(Allium cepa),potato(Soanum tuberosum),radish(Raphanus sativus),and sweet potato(Ipomoea batatas) . In the reaction,R-1-phenylethanol is produced with apple,sweet potato and potato as the catalyst,while S-1-phenylethanol is the product with the other vegetables as the catalyst. In term of the enantioselectivity and reaction yield,carrot(D. ca-rota) is the best catalyst for this reaction. Furthermore,the reaction characteristics were studied in detail using car-rot(D. carota) as the biocatalyst. The effects of various factors on the reaction were investigated and the optimal reaction conditions were determined. Under the optimal reaction conditions(reaction time 50 h,substrate concen-tration 20 mmol·L-1,reaction temperature 35 °C and pH 7),95% of e.e.(to S-1-phenylethanol) and 85% chemical yield can be obtained. This work extends the biocatalyst for the asymmetric reduction reaction of prochiral aromatic ketones,and provides a novel potential route to produce enantiopure aromatic alcohols.展开更多
We studied the biological effects of different magnetic fields. Identified bacterial strain Escherichia coli (type I) has been exposed to the dipolar magnetic field force (400, 800, 1200 and 1600 Gausses) which pr...We studied the biological effects of different magnetic fields. Identified bacterial strain Escherichia coli (type I) has been exposed to the dipolar magnetic field force (400, 800, 1200 and 1600 Gausses) which prepared locally with incubation for different period times (24, 48 and 72 hrs) at 37℃. The effects were evaluated by optical density (OD) at 600 nm determining their growth density incorporation with negative control and depending of McFarland turbidity standard (0.5), in addition to its susceptibility to various antibiotics. Results illustrate different forces of magnetic field decreased the growth rate of E. coli in particular at 24 hrs incubation comparing with unexposed or control samples. The magnetic field increased the logarithmic phase within 4-6 hrs of treatment but decreased after 16 to 18 hrs. Furthermore, changes in the antibiotic sensitivity were observed after exposure period of 6 hrs since E. coli cells became more sensitive to certain antibiotics. While after a 16 hrs exposure period, it became more resistant to the same antibiotics comparing with control groups.展开更多
Outstanding progress regarding the pathophysiology of Crohn's disease (CD) has led to the development of innovative therapeutic concepts. Numerous controlled trials have been performed in CD. This review concentra...Outstanding progress regarding the pathophysiology of Crohn's disease (CD) has led to the development of innovative therapeutic concepts. Numerous controlled trials have been performed in CD. This review concentrates on the results of randomized,placebo-controlled trials,and meta-analyses when available,that provide the highest degree of evidence. Current guidelines on the management of CD recommend a step-up approach to treatment involving the addition of more powerful therapies as the severity of disease and refractoriness to therapy increase. The advent of biological drugs has opened new therapeutic horizons for treating CD,modifying the treatment goals. However,the large majority of patients with CD will be managed through conventional therapy,even if they are a prelude to biological therapy.展开更多
Soil biotic communities can strongly impact plant performance.In this paper,we ask the question:how longlasting the effect of the soil microbial community on plant growth is.We examined the plant growth rates at three...Soil biotic communities can strongly impact plant performance.In this paper,we ask the question:how longlasting the effect of the soil microbial community on plant growth is.We examined the plant growth rates at three stages:early,mid and late growth.We performed two growth experiments with Jacobaea vulgaris,which lasted 49 and 63 days in sterilized soil or live soil.In a third experiment,we examined the effect of the timing of soil inoculation prior to planting on the relative growth rate of J.vulgaris with four different timing treatments.In all experiments,differences in biomass of plants grown in sterilized soil and live soil increased throughout the experiment.Also,the relative growth rate of plants in the sterilized soil was only significantly higher than that of plants in the live soil in the first two to three weeks.In the third experiment,plant biomass decreased with increasing time between inoculation and planting.Overall,our results showed that plants of J.vulgaris grew less well in live soil than in sterilized soil.The negative effects of soil inoculation on plant mass appeared to extend over the whole growth period but arise from the negative effects on relative growth rates that occurred in the first weeks.展开更多
A vast number of microorganisms colonize the leaf surface of terrestrial plants, known as the phyllosphere, and these microorganisms are thought to be of critical importance in plant growth and health. However, the ta...A vast number of microorganisms colonize the leaf surface of terrestrial plants, known as the phyllosphere, and these microorganisms are thought to be of critical importance in plant growth and health. However, the taxonomic identities and ecological functions of the microorganisms inhabiting the rice phyllosphere remain poorly understood. Using a massive, parallel pyrosequencing technique, we identified the phyllosphere bacterial taxa of four different rice varieties and investigated the microbial response to elevated CO2 (eCO2) in a rice field of a free-air CO2 enrichment (FACE) facility located in Jiangsu Province, China. The results showed that the dominant phylotype, the Enterobacteriaceae family of Gammaproteobacteria~ accounted for 70.6%-93.8% of the total bacterial communities in the rice phyllosphere. The dominant phylotype was stimulated by eCO2, with its relative abundance increasing from 70.6%-75.2% at ambient CO2 (aCO2) to 86.5%-93.8% at eCO2 in the phyllosphere of rice varieties IIYou084 (TY-084), YangLiangYou6 (YLY-6), and ZhenXian96 (ZX-96). The rare phylotypes, including the bacterial taxa of Sphingobacteriaceae, Xanthomonadaceae, Oxalobacteraceae, Clostridiaceae, and Pseudomonadaceae, were suppressed and their relative abundance decreased from 13.4%-23.0% at aCO2 to 1.47% 6.11% at eGO2. Furthermore, the bacterial diversity indices decreased at eCO2 in the phyllosphere of the rice varieties TY-084, YLY-6, and ZX-96. In contrast, an opposite response pattern was observed for the rice variety of YangDao8 (YD-8). In the phyllosphere of this variety, the relative abundance of the dominant phylotype, Enterobacteriaceae, decreased from 94.1% at aCO2 to 81.4% at eCO2, while that of the rare phylotypes increased from 3.37% to 6.59%. In addition, eCO2 appeared to stimulate bacterial diversity in the rice variety YD-8. Our results suggest that the phyllosphere microbial response to eCO2 might be relative abundance-dependent in paddy fields.展开更多
Meiosis comprises two rounds of nuclear division following a single phase of DNA replication, leading to the production of haploid gametes and is essential for sexual reproduction in eukaryotes. Unlike mitosis, meiosi...Meiosis comprises two rounds of nuclear division following a single phase of DNA replication, leading to the production of haploid gametes and is essential for sexual reproduction in eukaryotes. Unlike mitosis, meiosis involves homologous chromosome pairing, synapsis, and recombination during prophase I. Meiotic recombination not only ensures the accurate segregation of homologs, but also redistributes alleles among offspring. DNA synthesis is a critical process during meiotic recombination, but our understanding of the proteins that execute and regulate it is limited. This review summarizes the recent advances in defining the role of DNA synthesis in meiotic recombina- tion through analyses of DNA synthesis genes, with specific emphasis on DNA polymerases (e.g., Pole and PolS), replication processivity factor RFC1 and translesion polymerases (e.g., Pol~). We also present a new double strand break repair model for meiotic recombination, which includes lagging strand DNA synthesis and leading strand elongation. Finally, we propose that DNA synthesis is one of critical factors for discriminating meiotic recombination pathways and that this differentiation may be conserved among eukaryotes.展开更多
Aims Individual growth constitutes a major component of individual fitness.However,measuring growth rates of herbaceous plants non-destructively at the individual level is notoriously difficult.This study,based on an ...Aims Individual growth constitutes a major component of individual fitness.However,measuring growth rates of herbaceous plants non-destructively at the individual level is notoriously difficult.This study,based on an accurate non-destructive method of aboveground biomass estimation,aims to assess individual relative growth rates(RGRs)of some species,identify its environmental drivers and test its consequences on community patterning.We specifically address three questions:(i)to what extent environmental conditions explain differences in individual plant growth between sites,(ii)what is the magnitude of intraspecific variability of plant individual growth within and between sites and(iii)do species-averaged(dis-)advantage of individual growth compared with the whole vegetation within a site correlate with species ranking at the community level?Methods We monitored the growth of individuals of four common perennial species in 18 permanent grasslands chosen along a large pedoclimatic gradient located in the Massif Central,France.We measured soil properties,levels of resources and meteorological parameters to characterize environmental conditions at the site level.This design enables us to assess the influence of environmental conditions on individual growth and the relative extent of inter-individual variability of growth explained within and between sites.We determined the ranking of each of the four species in each site with botanical surveys to assess the relationship between species-averaged growth(dis-)advantage relative to the whole community and species rank in the community.Important Findings We found that environmental conditions explain a significant proportion of individual growth variability,and that this proportion is strongly variable between species.Light availability was the main driver of plant growth,followed by rainfall amount and potential evapotranspiration,while soil properties had only a slight effect.We further highlighted a moderate to high within-site inter-individual variability of growth.We finally showed that there was no correlation between species ranking and species-averaged individual growth.展开更多
A Lagrangian modeling approach is applied to the numerical simulation of the temporal dynamics of a stage-structured population. The growth dynamics is determined only by the main biological processes: development of...A Lagrangian modeling approach is applied to the numerical simulation of the temporal dynamics of a stage-structured population. The growth dynamics is determined only by the main biological processes: development of an individual, mortality, reproduction. Different approaches in modeling the development process of an individual are implemented: stochastic advection-diffusion models (backward-forward dispersion models), and stochastic development models where regression effects, defined as negative development on the status of an individual, are forbidden (forward dispersion models). Some properties of the residence times of an individual in a stage are investigated: in particular, their role in the calibration of the development models and in the estimation of some parameters introduced in the model equation. As a study case a multi-stage pelagic copepod population is considered. Trying to separate the effects of the main biological processes on the temporal dynamics, numerical simulations have been carried out in some idealized situations: first only the development of the individuals, neglecting mortality and reproduction, is considered; then the mortality process is introduced, and finally both the mortality and reproduction processes. The results of the numerical simulations, are compared and discussed.展开更多
文摘Hedysarum laeve Maxim. (Leguminosae) is one of the major species used frequently in revegetation of dune_field in the sandlands of the northern part of China by means of aerial sowing. Seedlings of the species after emergence above the sand surface may be buried in sand to various depths during its establishment in late spring and early summer. A study was made to examine the effects of sand burial at different levels of 0 (control), 33%, 67%, 100% and 133% of their shoot height, on the survivorship, growth, and biomass allocation pattern of H. laeve seedlings (one and two weeks old after emergence). When burial depth was up to 100% of their shoot height, about 70% seedlings died; and the burial at depth of 133% of their shoot height led to death of all seedlings. When seedlings was buried at depth of 33% and 67% of their shoot height, respectively, after six_week growth, their biomass of whole plant, blade, and root and relative growth rate were higher than the unburied counterparts. The seedlings in both 33% and 67% sand burial treatments did not significantly change their biomass allocation pattern comparing with the unburied ones. Furthermore, the number of leaves and shoot height of the seedlings in both 33% and 67% sand burial treatments were not significantly different from those of unburied individuals, respectively. The newly born leaves of the surviving seedlings, in 33%, 67%, and 100% burial treatments, during the period of experiment, were significantly more than those in control.
基金Supported by the National Natural Science Foundation of China(Nos.31172391,31472274)the Fundamental Research Funds for Central Universities(No.201762003)+2 种基金the Scholarship Foundation for Excellent Scientists of Shandong Province(No.BS2011SW054)the National HighTech R&D Program of China(863 Program)(No.2012AA10A402)the Open Funds of Institute of Biodiversity and Evolution,Ocean University of China(No.201362017)
文摘Study on shrimp miRNAs was limited and just 7 mature miRNA sequences of Marsupenaeus japonicus are deposited in mir Base database. In this study, miRNAs and their target gene candidates were computationally identified from shrimp Penaeu s monodon and then experimentally validated. Using 39 908 expressed sequence tags(ESTs) and 21 124 genome survey sequences(GSSs) of P. monodon(pmo) as reference dataset, a comprehensive approach based on inter-species homolog search was employed to investigate the candidate miRNAs(i.e. pmo-miRNA). A total of eight miRNAs belonging to 7 families were computationally identified and five out of them were subsequently validated by PCR and sequencing. Of these, pmo-miR-4961a, pmo-miR-4961b, pmo-miR-4979 and pmo-miR-3819 were first identified from shrimps. Both the mature pmo-miRNAs and the corresponding precursors were conserved among different species. Based on perfect or near-perfect match to the target region, the target gene candidates of pmomiRNAs were predicted from 10 331 mRNA sequences of P. monodon. A total of 20 genes were predicted as the targets of pmo-miR-4961a, pmo-miR-4961b, pmo-miR-4979 and pmo-miR-6492. Experimental validation by dual luciferase reporter assay confi rmed the targeting between 3 pmo-miRNAs and one or two of their target genes, especially the pmo-miR-4979 which could significantly down-regulate the expression of target gene(JR226772). This study updates the miRNAs and their targets in P. monodon and lays a solid foundation for future RNAi study.
文摘In this study,we considered the three-dimensional flow of a rotating viscous,incompressible electrically conducting nanofluid with oxytactic microorganisms and an insulated plate floating in the fluid.Three scenarios were considered in this study.The first case is when the fluid drags the plate,the second is when the plate drags the fluid and the third is when the plate floats on the fluid at the same velocity.The denser microorganisms create the bioconvection as they swim to the top following an oxygen gradient within the fluid.The velocity ratio parameter plays a key role in the dynamics for this flow.Varying the parameter below and above a critical value alters the dynamics of the flow.The Hartmann number,buoyancy ratio and radiation parameter have a reverse effect on the secondary velocity for values of the velocity ratio above and below the critical value.The Hall parameter on the other hand has a reverse effect on the primary velocity for values of velocity ratio above and below the critical value.The bioconvection Rayleigh number decreases the primary velocity.The secondary velocity increases with increasing values of the bioconvection Rayleigh number and is positive for velocity ratio values below 0.5.For values of the velocity ratio parameter above 0.5,the secondary velocity is negative for small values of bioconvection Rayleigh number and as the values increase,the flow is reversed and becomes positive.
文摘The study reveals analytically on the 3-dimensional viscous time-dependent gyrotactic bioconvection in swirling nanofluid flow past from a rotating disk.It is known that the deformation of the disk is along the radial direction.In addition to that Stefan blowing is considered.The Buongiorno nanofluid model is taken care of assuming the fluid to be dilute and we find Brownian motion and thermophoresis have dominant role on nanoscale unit.The primitive mass conservation equation,radial,tangential and axial momentum,heat,nano-particle concentration and micro-organism density function are developed in a cylindrical polar coordinate system with appropriate wall(disk surface)and free stream boundary conditions.This highly nonlinear,strongly coupled system of unsteady partial differential equations is normalized with the classical von Kármán and other transformations to render the boundary value problem into an ordinary differential system.The emerging 11th order system features an extensive range of dimensionless flow parameters,i.e.,disk stretching rate,Brownian motion,thermophoresis,bioconvection Lewis number,unsteadiness parameter,ordinary Lewis number,Prandtl number,mass convective Biot number,Péclet number and Stefan blowing parameter.Solutions of the system are obtained with developed semi-analytical technique,i.e.,Adomian decomposition method.Validation of the said problem is also conducted with earlier literature computed by Runge-Kutta shooting technique.
基金Supported by the Natural Science Foundation of Hubei Province(2008CDB354) Wuhan Youth Scientist Dawn Foundation(200750731288)
文摘Chiral aromatic alcohols are the key chiral building block for many important enantiopure pharmaceu-ticals. In this work,we studied asymmetric reduction of prochiral aromatic ketone to produce the corresponding chiral alcohol using vegetables as the biocatalyst. Acetophenone was chosen as the model substrate. The results in-dicate that acetophenone can be reduced to the corresponding chiral alcohols with high enantioselectivity by the chosen vegetables,i.e. apple(Malus pumila),carrot(Daucus carota),cucumber(Cucumis sativus),onion(Allium cepa),potato(Soanum tuberosum),radish(Raphanus sativus),and sweet potato(Ipomoea batatas) . In the reaction,R-1-phenylethanol is produced with apple,sweet potato and potato as the catalyst,while S-1-phenylethanol is the product with the other vegetables as the catalyst. In term of the enantioselectivity and reaction yield,carrot(D. ca-rota) is the best catalyst for this reaction. Furthermore,the reaction characteristics were studied in detail using car-rot(D. carota) as the biocatalyst. The effects of various factors on the reaction were investigated and the optimal reaction conditions were determined. Under the optimal reaction conditions(reaction time 50 h,substrate concen-tration 20 mmol·L-1,reaction temperature 35 °C and pH 7),95% of e.e.(to S-1-phenylethanol) and 85% chemical yield can be obtained. This work extends the biocatalyst for the asymmetric reduction reaction of prochiral aromatic ketones,and provides a novel potential route to produce enantiopure aromatic alcohols.
文摘We studied the biological effects of different magnetic fields. Identified bacterial strain Escherichia coli (type I) has been exposed to the dipolar magnetic field force (400, 800, 1200 and 1600 Gausses) which prepared locally with incubation for different period times (24, 48 and 72 hrs) at 37℃. The effects were evaluated by optical density (OD) at 600 nm determining their growth density incorporation with negative control and depending of McFarland turbidity standard (0.5), in addition to its susceptibility to various antibiotics. Results illustrate different forces of magnetic field decreased the growth rate of E. coli in particular at 24 hrs incubation comparing with unexposed or control samples. The magnetic field increased the logarithmic phase within 4-6 hrs of treatment but decreased after 16 to 18 hrs. Furthermore, changes in the antibiotic sensitivity were observed after exposure period of 6 hrs since E. coli cells became more sensitive to certain antibiotics. While after a 16 hrs exposure period, it became more resistant to the same antibiotics comparing with control groups.
文摘Outstanding progress regarding the pathophysiology of Crohn's disease (CD) has led to the development of innovative therapeutic concepts. Numerous controlled trials have been performed in CD. This review concentrates on the results of randomized,placebo-controlled trials,and meta-analyses when available,that provide the highest degree of evidence. Current guidelines on the management of CD recommend a step-up approach to treatment involving the addition of more powerful therapies as the severity of disease and refractoriness to therapy increase. The advent of biological drugs has opened new therapeutic horizons for treating CD,modifying the treatment goals. However,the large majority of patients with CD will be managed through conventional therapy,even if they are a prelude to biological therapy.
文摘Soil biotic communities can strongly impact plant performance.In this paper,we ask the question:how longlasting the effect of the soil microbial community on plant growth is.We examined the plant growth rates at three stages:early,mid and late growth.We performed two growth experiments with Jacobaea vulgaris,which lasted 49 and 63 days in sterilized soil or live soil.In a third experiment,we examined the effect of the timing of soil inoculation prior to planting on the relative growth rate of J.vulgaris with four different timing treatments.In all experiments,differences in biomass of plants grown in sterilized soil and live soil increased throughout the experiment.Also,the relative growth rate of plants in the sterilized soil was only significantly higher than that of plants in the live soil in the first two to three weeks.In the third experiment,plant biomass decreased with increasing time between inoculation and planting.Overall,our results showed that plants of J.vulgaris grew less well in live soil than in sterilized soil.The negative effects of soil inoculation on plant mass appeared to extend over the whole growth period but arise from the negative effects on relative growth rates that occurred in the first weeks.
基金Supported by the International S&T Cooperation Project of the Ministry of Science and Technology of China(No.2010DFA22770)the National Natural Science Foundation of China(No.41090281)
文摘A vast number of microorganisms colonize the leaf surface of terrestrial plants, known as the phyllosphere, and these microorganisms are thought to be of critical importance in plant growth and health. However, the taxonomic identities and ecological functions of the microorganisms inhabiting the rice phyllosphere remain poorly understood. Using a massive, parallel pyrosequencing technique, we identified the phyllosphere bacterial taxa of four different rice varieties and investigated the microbial response to elevated CO2 (eCO2) in a rice field of a free-air CO2 enrichment (FACE) facility located in Jiangsu Province, China. The results showed that the dominant phylotype, the Enterobacteriaceae family of Gammaproteobacteria~ accounted for 70.6%-93.8% of the total bacterial communities in the rice phyllosphere. The dominant phylotype was stimulated by eCO2, with its relative abundance increasing from 70.6%-75.2% at ambient CO2 (aCO2) to 86.5%-93.8% at eCO2 in the phyllosphere of rice varieties IIYou084 (TY-084), YangLiangYou6 (YLY-6), and ZhenXian96 (ZX-96). The rare phylotypes, including the bacterial taxa of Sphingobacteriaceae, Xanthomonadaceae, Oxalobacteraceae, Clostridiaceae, and Pseudomonadaceae, were suppressed and their relative abundance decreased from 13.4%-23.0% at aCO2 to 1.47% 6.11% at eGO2. Furthermore, the bacterial diversity indices decreased at eCO2 in the phyllosphere of the rice varieties TY-084, YLY-6, and ZX-96. In contrast, an opposite response pattern was observed for the rice variety of YangDao8 (YD-8). In the phyllosphere of this variety, the relative abundance of the dominant phylotype, Enterobacteriaceae, decreased from 94.1% at aCO2 to 81.4% at eCO2, while that of the rare phylotypes increased from 3.37% to 6.59%. In addition, eCO2 appeared to stimulate bacterial diversity in the rice variety YD-8. Our results suggest that the phyllosphere microbial response to eCO2 might be relative abundance-dependent in paddy fields.
基金Acknowledgments We apologize to colleagues whose work could not be cited owing to space constraints. J.H., H.M. and Y.W. are supported by the Ministry of Science and Technology of China (2011CB944603), the National Natural Science Foundation of China (31370347), and by funds from Fudan University and Rijk Zwaan. G.P.C. is supported by the US National Science Foundation (MCB- 1121563) and Rijk Zwaan.
文摘Meiosis comprises two rounds of nuclear division following a single phase of DNA replication, leading to the production of haploid gametes and is essential for sexual reproduction in eukaryotes. Unlike mitosis, meiosis involves homologous chromosome pairing, synapsis, and recombination during prophase I. Meiotic recombination not only ensures the accurate segregation of homologs, but also redistributes alleles among offspring. DNA synthesis is a critical process during meiotic recombination, but our understanding of the proteins that execute and regulate it is limited. This review summarizes the recent advances in defining the role of DNA synthesis in meiotic recombina- tion through analyses of DNA synthesis genes, with specific emphasis on DNA polymerases (e.g., Pole and PolS), replication processivity factor RFC1 and translesion polymerases (e.g., Pol~). We also present a new double strand break repair model for meiotic recombination, which includes lagging strand DNA synthesis and leading strand elongation. Finally, we propose that DNA synthesis is one of critical factors for discriminating meiotic recombination pathways and that this differentiation may be conserved among eukaryotes.
基金supported by the Region Auvergne-Rhône-Alpes and the European Regional Development Fund(FEDER)(grant no.AV0008781).
文摘Aims Individual growth constitutes a major component of individual fitness.However,measuring growth rates of herbaceous plants non-destructively at the individual level is notoriously difficult.This study,based on an accurate non-destructive method of aboveground biomass estimation,aims to assess individual relative growth rates(RGRs)of some species,identify its environmental drivers and test its consequences on community patterning.We specifically address three questions:(i)to what extent environmental conditions explain differences in individual plant growth between sites,(ii)what is the magnitude of intraspecific variability of plant individual growth within and between sites and(iii)do species-averaged(dis-)advantage of individual growth compared with the whole vegetation within a site correlate with species ranking at the community level?Methods We monitored the growth of individuals of four common perennial species in 18 permanent grasslands chosen along a large pedoclimatic gradient located in the Massif Central,France.We measured soil properties,levels of resources and meteorological parameters to characterize environmental conditions at the site level.This design enables us to assess the influence of environmental conditions on individual growth and the relative extent of inter-individual variability of growth explained within and between sites.We determined the ranking of each of the four species in each site with botanical surveys to assess the relationship between species-averaged growth(dis-)advantage relative to the whole community and species rank in the community.Important Findings We found that environmental conditions explain a significant proportion of individual growth variability,and that this proportion is strongly variable between species.Light availability was the main driver of plant growth,followed by rainfall amount and potential evapotranspiration,while soil properties had only a slight effect.We further highlighted a moderate to high within-site inter-individual variability of growth.We finally showed that there was no correlation between species ranking and species-averaged individual growth.
文摘A Lagrangian modeling approach is applied to the numerical simulation of the temporal dynamics of a stage-structured population. The growth dynamics is determined only by the main biological processes: development of an individual, mortality, reproduction. Different approaches in modeling the development process of an individual are implemented: stochastic advection-diffusion models (backward-forward dispersion models), and stochastic development models where regression effects, defined as negative development on the status of an individual, are forbidden (forward dispersion models). Some properties of the residence times of an individual in a stage are investigated: in particular, their role in the calibration of the development models and in the estimation of some parameters introduced in the model equation. As a study case a multi-stage pelagic copepod population is considered. Trying to separate the effects of the main biological processes on the temporal dynamics, numerical simulations have been carried out in some idealized situations: first only the development of the individuals, neglecting mortality and reproduction, is considered; then the mortality process is introduced, and finally both the mortality and reproduction processes. The results of the numerical simulations, are compared and discussed.