This paper studies the problem of functional inequalities for analytic functions in classical geometric function theory.Using the di erential subordination principle and(p,q)-derivative operator,it introduces(p,q)-ana...This paper studies the problem of functional inequalities for analytic functions in classical geometric function theory.Using the di erential subordination principle and(p,q)-derivative operator,it introduces(p,q)-analog of a class of multivalently Bazilevic functions as-sociated with a limacon function,and obtains the corresponding coefficient estimates and the Fekete-Szego inequality,which extend and improve the related results for starlike functions,even q-starlike functions.展开更多
Abstract This paper gencralizes the result about linear isometries of S~ spaces given by W.P.Novinger and D.M.Oberlin[2]for the unite dise of C to the bounded symmetric domains of C^n
基金Supported by Natural Science Foundation of Ningxia(2023AAC 03001)Natural Science Foundation of China(12261068)
文摘This paper studies the problem of functional inequalities for analytic functions in classical geometric function theory.Using the di erential subordination principle and(p,q)-derivative operator,it introduces(p,q)-analog of a class of multivalently Bazilevic functions as-sociated with a limacon function,and obtains the corresponding coefficient estimates and the Fekete-Szego inequality,which extend and improve the related results for starlike functions,even q-starlike functions.
文摘Abstract This paper gencralizes the result about linear isometries of S~ spaces given by W.P.Novinger and D.M.Oberlin[2]for the unite dise of C to the bounded symmetric domains of C^n