The electronic configuration of central metal atoms in single-atom catalysts(SACs)is pivotal in electrochemical CO_(2) reduction reaction(eCO_(2)RR).Herein,chalcogen heteroatoms(e.g.,S,Se,and Te)were incorporated into...The electronic configuration of central metal atoms in single-atom catalysts(SACs)is pivotal in electrochemical CO_(2) reduction reaction(eCO_(2)RR).Herein,chalcogen heteroatoms(e.g.,S,Se,and Te)were incorporated into the symmetric nickel-nitrogen-carbon(Ni-N_(4)-C)configuration to obtain Ni-X-N_(3)-C(X:S,Se,and Te)SACs with asymmetric coordination presented for central Ni atoms.Among these obtained Ni-X-N_(3)-C(X:S,Se,and Te)SACs,Ni-Se-N_(3)-C exhibited superior eCO_(2)RR activity,with CO selectivity reaching~98% at-0.70 V versus reversible hydrogen electrode(RHE).The Zn-CO_(2) battery integrated with Ni-Se-N_(3)-C as cathode and Zn foil as anode achieved a peak power density of 1.82 mW cm^(-2) and maintained remarkable rechargeable stability over 20 h.In-situ spectral investigations and theoretical calculations demonstrated that the chalcogen heteroatoms doped into the Ni-N_(4)-C configuration would break coordination symmetry and trigger charge redistribution,and then regulate the intermediate behaviors and thermodynamic reaction pathways for eCO_(2)RR.Especially,for Ni-Se-N_(3)-C,the introduced Se atoms could significantly raise the d-band center of central Ni atoms and thus remarkably lower the energy barrier for the rate-determining step of ^(*)COOH formation,contributing to the promising eCO_(2)RR performance for high selectivity CO production by competing with hydrogen evolution reaction.展开更多
In this paper we studied a class of singular pseudo-differential equation and proved the existence and uniqueness of solution for the non-standard Cauchy problem.
Nineβ‐cyclodextrin derivatives containing an amino group were synthesized via nucleophilic sub‐stitution from mono(6‐O‐p‐tolylsulfonyl)‐β‐cyclodextrin and used in asymmetric biomimetic Mi‐chael addition re...Nineβ‐cyclodextrin derivatives containing an amino group were synthesized via nucleophilic sub‐stitution from mono(6‐O‐p‐tolylsulfonyl)‐β‐cyclodextrin and used in asymmetric biomimetic Mi‐chael addition reactions in water at room temperature. The mechanism responsible for the moder‐ate activity and enantioselectivity of the β‐cyclodextrin derivatives was explored using nuclear magnetic resonance spectroscopy, namely 2D 1H rotating‐frame overhauser effect spectroscopy (ROESY), ultraviolet absorption spectroscopy, and quantum chemical calculations, which provide a useful technique for investigating the formation of inclusion complexes. The effects of the pH of the reaction medium, theβ‐cyclodextrin derivative dosage, the structure of the modifying amino group, and various substrates on the yield and enantioselectivity were investigated. The results indicated that these factors had an important effect on the enantiomeric excess (ee) in the reaction system. Experiments using a competitor for inclusion complex formation showed that a hydrophobic cavity is necessary for enantioselective Michael addition. A comparison of the reactions using 4‐nitro‐β‐nitrostyrene and 2‐nitro‐β‐nitrostyrene showed that steric hindrance improved the enan‐tioselectivity. This was verified by the optimized geometries obtained from quantum chemical cal‐culations. An ee of 71%was obtained in the asymmetric Michael addition of cyclohexanone and 2‐nitro‐β‐nitrostyrene, using (S)‐2‐aminomethylpyrrolidine‐modified β‐CD as the catalyst, in an aqueous buffer solution, i.e., CH3COONa‐HCl (pH 7.5).展开更多
Hydrogen evolution reaction (HER) at polycrystalline silver electrode in 0.1 mol/L HClO4 solution is investigated by cyclic voltammetry in the temperature range of 278-333 K. We found that at electrode potential φa...Hydrogen evolution reaction (HER) at polycrystalline silver electrode in 0.1 mol/L HClO4 solution is investigated by cyclic voltammetry in the temperature range of 278-333 K. We found that at electrode potential φa,app decreases with φ, while pre-exponential factor A remains nearly unchanged,which conforms well the prediction from Butler-Volmer equation. In contrast, with φ nega-tive shifts from the onset potential for HER to the potential of zero charge (PZC≈-0.4 V), both Ea,app and A for HER increase (e.g., Ea,app increases from 24 kJ/mol to 32 kJ/mol). The increase in Ea,app and A with negative shift in φ from -0.25 V to PZC is explained by the increases of both internal energy change and entropy change from reactants to the transition states, which is correlated with the change in the hydrogen bond network during HER. The positive entropy effects overcompensate the adverse effect from the increase in the activation energy, which leads to a net increase in HER current with the activation energy negative shift from the onset potential of HER to PZC. It is pointed out that entropy change may contribute greatly to the kinetics for electrode reaction which involves the transfer of electron and proton, such as HER.展开更多
The temperature dependence of hydrogen evolution reaction (HER) at a quasi-single crystalline gold electrode in both 0.1 mol/L HCl04 and 0.1 mol/L KOH solutions was investigated by cyclic voltammetry. HER current di...The temperature dependence of hydrogen evolution reaction (HER) at a quasi-single crystalline gold electrode in both 0.1 mol/L HCl04 and 0.1 mol/L KOH solutions was investigated by cyclic voltammetry. HER current displays a clear increase with reaction overpotential (η) and temperature from 278-333 K. In 0.1 mol/L HClO4 the Tafel slopes are found to increases slightly with temperature from 118 mV/dec to 146 mV/dec, while in 0.1 mol/L KOH it is ca. 153±15 mV/dec without clear temperature-dependent trend. The apparent activation energy (Ea) for HER at equilibrium potential is ca. 48 and 34 kJ/mol in 0.1 mol/L HC104 and 0.1 mol/L KOH, respectively. In acid solution, Ea decreases with increase in η, from Ea-37 kJ/mol (η=0.2 V) to 30 kJ/mol (η=0.35 V). In contrast, in 0.1 mol/L KOH, Ea does not show obvious change with U. The pre-exponential factor (A) in 0.1 mol/L HC104 is ca. 1 order higher than that in 0.1 mol/L KOH. Toward more negative potential, in 0.1 mol/L HC104 A changes little with potential, while in 0.1 mol/L KOH it displays a monotonic increase with U. The change trends of the potential-dependent kinetic parameters for HER at Au electrode in 0.1 mol/L HClO4 and that in 0.1 mol/L KOH are discussed.展开更多
Cooperative hydrogen atom transfer and chiral hydrogen‐bonding catalysis as a new platform for the asymmetric synthesis of azaarene derivatives is reported.By using a tetrabutylammonium decatungstate as the photocata...Cooperative hydrogen atom transfer and chiral hydrogen‐bonding catalysis as a new platform for the asymmetric synthesis of azaarene derivatives is reported.By using a tetrabutylammonium decatungstate as the photocatalyst and a chiral phosphoric acid as the hydrogen‐bonding catalyst,transformations of a variety of commercially available hydrocarbons and silanes with diverseα‐branched 2‐vinylazaarenes could efficiently experience a tandem radical conjugate addition and enantioselective protonation process,providing a convenient and fully atom economical approach to access a range of valuable enantioenrichedα‐tertiary azaarenes in high yields with good to excellent enantioselectivities(up to 93%ee).Through the direct use of tert‐butyl methylcarbamate as the feedstock,this method enables a highly practical and concise synthesis of the enantiomerically pure medicinal molecule pheniramine(Avil).展开更多
ZSM-5 zeolites with similar St/Al ratio were synthesized successfully using various templates [n- butylamine (BTA), tetrapropylammonium bromide (TPABr) and no template (NT)] under hydrothermal conditions, The sa...ZSM-5 zeolites with similar St/Al ratio were synthesized successfully using various templates [n- butylamine (BTA), tetrapropylammonium bromide (TPABr) and no template (NT)] under hydrothermal conditions, The samples were characterized by XRD, SEM, Py-IR and BET surface area measurements in order to understand the template eiTects and the differences between the ZSM-5 santples. The synthesis of ZSM-5 with organic templates was relatively easier than those with inorganic templates and withnut template. SEM results revealed that ZSM-5 synthesized with different templates had different morphologies in similar particle size. Toluene disproportiortation reaction was carried out over the catalyst samples to evaluate the catalytic properties. The results have shown that large crystals which have a correspondingly small external surface showed a high para-xylene selectivity, and the amount of C9^+ and C5^+ was much less than that obtained from zeolite with small crystals.展开更多
The nitrogen reduction reaction(NRR)under ambient conditions is still challenging due to the inertness of N2.Herein,we report a series of superior NRR catalysts identified by examining Ti2NO2 MXenes embedded with 28 d...The nitrogen reduction reaction(NRR)under ambient conditions is still challenging due to the inertness of N2.Herein,we report a series of superior NRR catalysts identified by examining Ti2NO2 MXenes embedded with 28 different single-atom catalysts using first-principles calculations.The stability of this system was first verified using formation energies,and it is discovered that N2 can be effectively adsorbed due to the synergistic effect between single atom catalysis and the Ti atoms.Examination of the electronic structure demonstrated that this design satisfies orbital symmetry matching where“acceptor-donor”interaction scenario can be realized.A new“enzymatic-distal”reaction mechanism that is a mixture of the enzymatic and distal pathways was also discovered.Among all of the candidates,Ni anchored on MXene system achieves an onset potential as low as–0.13 V,which to the best of our knowledge is the lowest onset potential value reported to date.This work elucidates the significance of orbital symmetry matching and provides theoretical guidance for future studies.展开更多
Based on the dielectric continuum model and Loudon's uniaxial crystal model, the properties of the quasi. confined (QC) optical phonon dispersions and the electron-QC phonons coupling functions in an asymmetric wur...Based on the dielectric continuum model and Loudon's uniaxial crystal model, the properties of the quasi. confined (QC) optical phonon dispersions and the electron-QC phonons coupling functions in an asymmetric wurtzite quantum well (QW) are deduced via the method of electrostatic .potential expanding. The present theoretical scheme can naturally reduce to the results in symmetric wurtzite QW once a set of symmetric structural parameters are chosen. Numerical calculations on an asymmetric AlN/GaN/AIo,15 Gao.85N Wurtzite Q W are performed. A detailed comparison with the symmetric wurtzite QW was also performed. The results show that the structural asymmetry of wurtzite QW changes greatly the dispersion frequencies and the electrostatic potential distributions of the QC optical phonon modes.展开更多
The N/Z ratio of free nucleons from collisions of neutron-rich nuclei as a function of their momentum is studied by means of isospin-dependent Quantum Molecular Dynamics. We find that this ratio is not only sensitive ...The N/Z ratio of free nucleons from collisions of neutron-rich nuclei as a function of their momentum is studied by means of isospin-dependent Quantum Molecular Dynamics. We find that this ratio is not only sensitive to the form of the density dependence of the symmetry potential energy but also its strength determined by the symmetry energy coefficient. The uncertainties about the symmetry energy coefficient influence the accuracy of probing the density dependence of the symmetry energy by means of the N/Z ratio of free nucleons of neutron-rich nuclei.展开更多
Based on a modified version of the global color symmetry model,the pion susceptibilities of vacuum needed in the QCD sum rule external-field method for the coupling of pseudoscalar current to hadron have bean calculat...Based on a modified version of the global color symmetry model,the pion susceptibilities of vacuum needed in the QCD sum rule external-field method for the coupling of pseudoscalar current to hadron have bean calculated beyond the vacuum saturation approximation.Comparison with the previous estimations has been given.展开更多
Employing improved calculations of the decay form factors from light-cone sum rules, we evaluate the invariant mass spectrum, forward-backward asymmetry, and lepton polarizations of the exclusive processes B → K^(*...Employing improved calculations of the decay form factors from light-cone sum rules, we evaluate the invariant mass spectrum, forward-backward asymmetry, and lepton polarizations of the exclusive processes B → K^(*)e+e- in the SM and T2HDM. From the recent measurements of their branching ratios, we find that these processes do provide additional bounds on the new parameters in the model considered here. After the inclusion of the new physics contributions, the large enhancement of FBA, which is unobservably small within the SM and of the lepton polarization at large tan β, may precisely test the SM or reveal new physics in forthcoming accurate experiments.展开更多
The quantum chemical method is employed to study the modified asymmetric allylation of benzaldehyde controlled by diisopropyl D-(-)-tartrate auxiliary. All the structures are optimized completely at the B3LYP/6-31G(d,...The quantum chemical method is employed to study the modified asymmetric allylation of benzaldehyde controlled by diisopropyl D-(-)-tartrate auxiliary. All the structures are optimized completely at the B3LYP/6-31G(d,p) level. The (R)-secondary alcohol can be achieved mainly through a six-membered ring chair-like transition state structure. From the relative reaction rates theory the main product configuration predicted is in agreement with the experiment result.展开更多
We investigate the behavior of the vacuum polarization of the gauge-boson Ⅱ and the wave-function renormalization factor of the fermion A in QEDs, using the coupled Dyson-Schwinger equations for the gauge-boson and f...We investigate the behavior of the vacuum polarization of the gauge-boson Ⅱ and the wave-function renormalization factor of the fermion A in QEDs, using the coupled Dyson-Schwinger equations for the gauge-boson and fermion propagator. Using several different ansatze for the fermion-gauge-boson vertex, we find that the wave-function renormalization factor .4 and especially the vacuum polarization Ⅱ have different behaviors in the dynamical chiral symmetry breaking phase and in the chiral symmetric phase and hence in the phenomenological applications of QED3 one should choose different forms of gauge-boson propagator for these two phases. We also find that when adopting a specific ansatze of the fermion-gauge-boson vertex (ansatze (3)) the vacuum polarization function equals its one-loop perturbative result in the chiral symmetric phase. This fact suggests that in QEDs the Wigner vacuum corresponds to the perturbative vacuum.展开更多
The non-Markovian decoherence of quantum and classical correlations is analytically obtained when two qubits are asymmetrically subjected to the bit flip channel and phase flip channel. For one class of initial mixed ...The non-Markovian decoherence of quantum and classical correlations is analytically obtained when two qubits are asymmetrically subjected to the bit flip channel and phase flip channel. For one class of initial mixed states, quantum correlations quantified by quantum discord decay synchronously with classical correlations. The discovery that the decaying rates of quantum and classical correlations suddenly change at the characteristic time is physically interpreted by the distance from quantum state to the closest classical states. In a large time interval, quantum correlations are greater than classical correlations. The quantum and classical correlations can be preserved over a longer period of time via the kernel characterizing the environment memory effects.展开更多
文摘The electronic configuration of central metal atoms in single-atom catalysts(SACs)is pivotal in electrochemical CO_(2) reduction reaction(eCO_(2)RR).Herein,chalcogen heteroatoms(e.g.,S,Se,and Te)were incorporated into the symmetric nickel-nitrogen-carbon(Ni-N_(4)-C)configuration to obtain Ni-X-N_(3)-C(X:S,Se,and Te)SACs with asymmetric coordination presented for central Ni atoms.Among these obtained Ni-X-N_(3)-C(X:S,Se,and Te)SACs,Ni-Se-N_(3)-C exhibited superior eCO_(2)RR activity,with CO selectivity reaching~98% at-0.70 V versus reversible hydrogen electrode(RHE).The Zn-CO_(2) battery integrated with Ni-Se-N_(3)-C as cathode and Zn foil as anode achieved a peak power density of 1.82 mW cm^(-2) and maintained remarkable rechargeable stability over 20 h.In-situ spectral investigations and theoretical calculations demonstrated that the chalcogen heteroatoms doped into the Ni-N_(4)-C configuration would break coordination symmetry and trigger charge redistribution,and then regulate the intermediate behaviors and thermodynamic reaction pathways for eCO_(2)RR.Especially,for Ni-Se-N_(3)-C,the introduced Se atoms could significantly raise the d-band center of central Ni atoms and thus remarkably lower the energy barrier for the rate-determining step of ^(*)COOH formation,contributing to the promising eCO_(2)RR performance for high selectivity CO production by competing with hydrogen evolution reaction.
文摘In this paper we studied a class of singular pseudo-differential equation and proved the existence and uniqueness of solution for the non-standard Cauchy problem.
基金supported by the National Natural Science Foundation of China (21425627,21376279)~~
文摘Nineβ‐cyclodextrin derivatives containing an amino group were synthesized via nucleophilic sub‐stitution from mono(6‐O‐p‐tolylsulfonyl)‐β‐cyclodextrin and used in asymmetric biomimetic Mi‐chael addition reactions in water at room temperature. The mechanism responsible for the moder‐ate activity and enantioselectivity of the β‐cyclodextrin derivatives was explored using nuclear magnetic resonance spectroscopy, namely 2D 1H rotating‐frame overhauser effect spectroscopy (ROESY), ultraviolet absorption spectroscopy, and quantum chemical calculations, which provide a useful technique for investigating the formation of inclusion complexes. The effects of the pH of the reaction medium, theβ‐cyclodextrin derivative dosage, the structure of the modifying amino group, and various substrates on the yield and enantioselectivity were investigated. The results indicated that these factors had an important effect on the enantiomeric excess (ee) in the reaction system. Experiments using a competitor for inclusion complex formation showed that a hydrophobic cavity is necessary for enantioselective Michael addition. A comparison of the reactions using 4‐nitro‐β‐nitrostyrene and 2‐nitro‐β‐nitrostyrene showed that steric hindrance improved the enan‐tioselectivity. This was verified by the optimized geometries obtained from quantum chemical cal‐culations. An ee of 71%was obtained in the asymmetric Michael addition of cyclohexanone and 2‐nitro‐β‐nitrostyrene, using (S)‐2‐aminomethylpyrrolidine‐modified β‐CD as the catalyst, in an aqueous buffer solution, i.e., CH3COONa‐HCl (pH 7.5).
基金ACKNOWLEDGMENTS This work was supported by the One Hundred Talents' Program of the Chinese Academy of Science, the National Natural Science Foundation of China (No.21073176), and the National Basic Research Program of China National Science and Technology (No.2010CB923302).
文摘Hydrogen evolution reaction (HER) at polycrystalline silver electrode in 0.1 mol/L HClO4 solution is investigated by cyclic voltammetry in the temperature range of 278-333 K. We found that at electrode potential φa,app decreases with φ, while pre-exponential factor A remains nearly unchanged,which conforms well the prediction from Butler-Volmer equation. In contrast, with φ nega-tive shifts from the onset potential for HER to the potential of zero charge (PZC≈-0.4 V), both Ea,app and A for HER increase (e.g., Ea,app increases from 24 kJ/mol to 32 kJ/mol). The increase in Ea,app and A with negative shift in φ from -0.25 V to PZC is explained by the increases of both internal energy change and entropy change from reactants to the transition states, which is correlated with the change in the hydrogen bond network during HER. The positive entropy effects overcompensate the adverse effect from the increase in the activation energy, which leads to a net increase in HER current with the activation energy negative shift from the onset potential of HER to PZC. It is pointed out that entropy change may contribute greatly to the kinetics for electrode reaction which involves the transfer of electron and proton, such as HER.
基金V, ACKNOWLEDGMENTS This work was supported by one Hundred Talents' Program of the Chinese Academy of Science, the National Natural Science Foundation of China (No.21073176), and 973 Program from the Ministry of Science and Technology of China (No.2010CB923302).
文摘The temperature dependence of hydrogen evolution reaction (HER) at a quasi-single crystalline gold electrode in both 0.1 mol/L HCl04 and 0.1 mol/L KOH solutions was investigated by cyclic voltammetry. HER current displays a clear increase with reaction overpotential (η) and temperature from 278-333 K. In 0.1 mol/L HClO4 the Tafel slopes are found to increases slightly with temperature from 118 mV/dec to 146 mV/dec, while in 0.1 mol/L KOH it is ca. 153±15 mV/dec without clear temperature-dependent trend. The apparent activation energy (Ea) for HER at equilibrium potential is ca. 48 and 34 kJ/mol in 0.1 mol/L HC104 and 0.1 mol/L KOH, respectively. In acid solution, Ea decreases with increase in η, from Ea-37 kJ/mol (η=0.2 V) to 30 kJ/mol (η=0.35 V). In contrast, in 0.1 mol/L KOH, Ea does not show obvious change with U. The pre-exponential factor (A) in 0.1 mol/L HC104 is ca. 1 order higher than that in 0.1 mol/L KOH. Toward more negative potential, in 0.1 mol/L HC104 A changes little with potential, while in 0.1 mol/L KOH it displays a monotonic increase with U. The change trends of the potential-dependent kinetic parameters for HER at Au electrode in 0.1 mol/L HClO4 and that in 0.1 mol/L KOH are discussed.
文摘Cooperative hydrogen atom transfer and chiral hydrogen‐bonding catalysis as a new platform for the asymmetric synthesis of azaarene derivatives is reported.By using a tetrabutylammonium decatungstate as the photocatalyst and a chiral phosphoric acid as the hydrogen‐bonding catalyst,transformations of a variety of commercially available hydrocarbons and silanes with diverseα‐branched 2‐vinylazaarenes could efficiently experience a tandem radical conjugate addition and enantioselective protonation process,providing a convenient and fully atom economical approach to access a range of valuable enantioenrichedα‐tertiary azaarenes in high yields with good to excellent enantioselectivities(up to 93%ee).Through the direct use of tert‐butyl methylcarbamate as the feedstock,this method enables a highly practical and concise synthesis of the enantiomerically pure medicinal molecule pheniramine(Avil).
文摘ZSM-5 zeolites with similar St/Al ratio were synthesized successfully using various templates [n- butylamine (BTA), tetrapropylammonium bromide (TPABr) and no template (NT)] under hydrothermal conditions, The samples were characterized by XRD, SEM, Py-IR and BET surface area measurements in order to understand the template eiTects and the differences between the ZSM-5 santples. The synthesis of ZSM-5 with organic templates was relatively easier than those with inorganic templates and withnut template. SEM results revealed that ZSM-5 synthesized with different templates had different morphologies in similar particle size. Toluene disproportiortation reaction was carried out over the catalyst samples to evaluate the catalytic properties. The results have shown that large crystals which have a correspondingly small external surface showed a high para-xylene selectivity, and the amount of C9^+ and C5^+ was much less than that obtained from zeolite with small crystals.
文摘The nitrogen reduction reaction(NRR)under ambient conditions is still challenging due to the inertness of N2.Herein,we report a series of superior NRR catalysts identified by examining Ti2NO2 MXenes embedded with 28 different single-atom catalysts using first-principles calculations.The stability of this system was first verified using formation energies,and it is discovered that N2 can be effectively adsorbed due to the synergistic effect between single atom catalysis and the Ti atoms.Examination of the electronic structure demonstrated that this design satisfies orbital symmetry matching where“acceptor-donor”interaction scenario can be realized.A new“enzymatic-distal”reaction mechanism that is a mixture of the enzymatic and distal pathways was also discovered.Among all of the candidates,Ni anchored on MXene system achieves an onset potential as low as–0.13 V,which to the best of our knowledge is the lowest onset potential value reported to date.This work elucidates the significance of orbital symmetry matching and provides theoretical guidance for future studies.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 60276004 and 6939007,3, the Scientilic Research Foundation for the Returned 0overseas Chinese Scholars State Education Ministry of China
文摘Based on the dielectric continuum model and Loudon's uniaxial crystal model, the properties of the quasi. confined (QC) optical phonon dispersions and the electron-QC phonons coupling functions in an asymmetric wurtzite quantum well (QW) are deduced via the method of electrostatic .potential expanding. The present theoretical scheme can naturally reduce to the results in symmetric wurtzite QW once a set of symmetric structural parameters are chosen. Numerical calculations on an asymmetric AlN/GaN/AIo,15 Gao.85N Wurtzite Q W are performed. A detailed comparison with the symmetric wurtzite QW was also performed. The results show that the structural asymmetry of wurtzite QW changes greatly the dispersion frequencies and the electrostatic potential distributions of the QC optical phonon modes.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10175093 and 10235030+4 种基金the Science Foundation of Chinese Nuclear Industry and the State Key Basic Research Development Program under Contract No.G20000774the Knowledge Innovation Project of the Chinese Academy of Sciences under Grant No.KJCX2-SW-N02the CASK.C.Wong Post-doctors Research Award Fund
文摘The N/Z ratio of free nucleons from collisions of neutron-rich nuclei as a function of their momentum is studied by means of isospin-dependent Quantum Molecular Dynamics. We find that this ratio is not only sensitive to the form of the density dependence of the symmetry potential energy but also its strength determined by the symmetry energy coefficient. The uncertainties about the symmetry energy coefficient influence the accuracy of probing the density dependence of the symmetry energy by means of the N/Z ratio of free nucleons of neutron-rich nuclei.
文摘Based on a modified version of the global color symmetry model,the pion susceptibilities of vacuum needed in the QCD sum rule external-field method for the coupling of pseudoscalar current to hadron have bean calculated beyond the vacuum saturation approximation.Comparison with the previous estimations has been given.
基金National Natural Science Foundation of China under Grant No.10575052the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) under Grant No.20050319008
文摘Employing improved calculations of the decay form factors from light-cone sum rules, we evaluate the invariant mass spectrum, forward-backward asymmetry, and lepton polarizations of the exclusive processes B → K^(*)e+e- in the SM and T2HDM. From the recent measurements of their branching ratios, we find that these processes do provide additional bounds on the new parameters in the model considered here. After the inclusion of the new physics contributions, the large enhancement of FBA, which is unobservably small within the SM and of the lepton polarization at large tan β, may precisely test the SM or reveal new physics in forthcoming accurate experiments.
文摘The quantum chemical method is employed to study the modified asymmetric allylation of benzaldehyde controlled by diisopropyl D-(-)-tartrate auxiliary. All the structures are optimized completely at the B3LYP/6-31G(d,p) level. The (R)-secondary alcohol can be achieved mainly through a six-membered ring chair-like transition state structure. From the relative reaction rates theory the main product configuration predicted is in agreement with the experiment result.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos, 10175033 and 10135030 and the Research Fund for the Doctoral Program of Higher Education under Grant No. 20030284009
文摘We investigate the behavior of the vacuum polarization of the gauge-boson Ⅱ and the wave-function renormalization factor of the fermion A in QEDs, using the coupled Dyson-Schwinger equations for the gauge-boson and fermion propagator. Using several different ansatze for the fermion-gauge-boson vertex, we find that the wave-function renormalization factor .4 and especially the vacuum polarization Ⅱ have different behaviors in the dynamical chiral symmetry breaking phase and in the chiral symmetric phase and hence in the phenomenological applications of QED3 one should choose different forms of gauge-boson propagator for these two phases. We also find that when adopting a specific ansatze of the fermion-gauge-boson vertex (ansatze (3)) the vacuum polarization function equals its one-loop perturbative result in the chiral symmetric phase. This fact suggests that in QEDs the Wigner vacuum corresponds to the perturbative vacuum.
基金Supported by the Research Program of Natural Science for Colleges and Universities in Jiangsu Province under Grant No.09KJB140009the National Natural Science Foundation under Grant No.10904104
文摘The non-Markovian decoherence of quantum and classical correlations is analytically obtained when two qubits are asymmetrically subjected to the bit flip channel and phase flip channel. For one class of initial mixed states, quantum correlations quantified by quantum discord decay synchronously with classical correlations. The discovery that the decaying rates of quantum and classical correlations suddenly change at the characteristic time is physically interpreted by the distance from quantum state to the closest classical states. In a large time interval, quantum correlations are greater than classical correlations. The quantum and classical correlations can be preserved over a longer period of time via the kernel characterizing the environment memory effects.