为获得高性能ReBaMn_(2)O_(5+δ)对称电极材料,本工作通过第一性原理计算分析了不同稀土元素(La,Pr,Nd,Sm,Gd,Y)对材料结构和性能的影响。计算结果表明LaBaMn_(2)O_(5+δ)不易形成层状钙钛矿结构,Gd Ba Mn_(2)O_(5+δ)的结合能最高,对...为获得高性能ReBaMn_(2)O_(5+δ)对称电极材料,本工作通过第一性原理计算分析了不同稀土元素(La,Pr,Nd,Sm,Gd,Y)对材料结构和性能的影响。计算结果表明LaBaMn_(2)O_(5+δ)不易形成层状钙钛矿结构,Gd Ba Mn_(2)O_(5+δ)的结合能最高,对应结构稳定性最好,而Nd Ba Mn_(2)O_(5+δ)则具有较小的Mn 3d和O_(2)p轨道之间的能量差、以及较低的O_(2)p轨道中心与Fermi面的能量差,对应材料较高的电导率和优异的催化活性。选用La,Nd和Gd作为A位元素进行实验研究。结果表明,LaBaMn_(2)O_(5+δ)难以形成单相钙钛矿,但成功合成了具有层状结构的Nd Ba Mn_(2)O_(5+δ)和Gd BaMn_(2)O_(5+δ),其在氧化和还原气氛下均保持良好的结构稳定性。相比于Gd Ba Mn_(2)O_(5+δ),Nd Ba Mn_(2)O_(5+δ)在空气和5%(体积分数) H2/Ar中均具有较高的电导率。且Nd Ba Mn_(2)O_(5+δ)电极在空气和氢气气氛下的极化阻抗均小于GdBaMn_(2)O_(5+δ),表现出更强的催化活性。以NdBaMn_(2)O_(5+δ)为对称电极,300μm的La_(0.8)Sr_(0.2)Ga_(0.8)Mg0.2O_(3)–δ为电解质制备的对称全电池,在850℃下最大功率密度达到335 mW·cm^(-2)。展开更多
文摘为获得高性能ReBaMn_(2)O_(5+δ)对称电极材料,本工作通过第一性原理计算分析了不同稀土元素(La,Pr,Nd,Sm,Gd,Y)对材料结构和性能的影响。计算结果表明LaBaMn_(2)O_(5+δ)不易形成层状钙钛矿结构,Gd Ba Mn_(2)O_(5+δ)的结合能最高,对应结构稳定性最好,而Nd Ba Mn_(2)O_(5+δ)则具有较小的Mn 3d和O_(2)p轨道之间的能量差、以及较低的O_(2)p轨道中心与Fermi面的能量差,对应材料较高的电导率和优异的催化活性。选用La,Nd和Gd作为A位元素进行实验研究。结果表明,LaBaMn_(2)O_(5+δ)难以形成单相钙钛矿,但成功合成了具有层状结构的Nd Ba Mn_(2)O_(5+δ)和Gd BaMn_(2)O_(5+δ),其在氧化和还原气氛下均保持良好的结构稳定性。相比于Gd Ba Mn_(2)O_(5+δ),Nd Ba Mn_(2)O_(5+δ)在空气和5%(体积分数) H2/Ar中均具有较高的电导率。且Nd Ba Mn_(2)O_(5+δ)电极在空气和氢气气氛下的极化阻抗均小于GdBaMn_(2)O_(5+δ),表现出更强的催化活性。以NdBaMn_(2)O_(5+δ)为对称电极,300μm的La_(0.8)Sr_(0.2)Ga_(0.8)Mg0.2O_(3)–δ为电解质制备的对称全电池,在850℃下最大功率密度达到335 mW·cm^(-2)。