Whitham–Broer–Kaup(WBK) equations in the shallow water small-amplitude regime is hereby under investigation. Nonlocal symmetry and Bcklund transformation are presented via the truncated Painlevé expansion.This ...Whitham–Broer–Kaup(WBK) equations in the shallow water small-amplitude regime is hereby under investigation. Nonlocal symmetry and Bcklund transformation are presented via the truncated Painlevé expansion.This residual symmetry is localised to Lie point symmetry by the properly enlarged system. The finite symmetry transformation of the prolonged system is computed. Based on the CTE method, WBK equations are linearized and new analytic interaction solutions between solitary waves and cnoidal waves are given with the aid of solutions for the linear equation.展开更多
基金Supported by the Key Foundation of Anhui Education Bureau under Grant No.KJ2013A028the 211 Project of Anhhui University under Grant No.J18520104+2 种基金Scientific Training Project for University StudentsNational Natural Science Foundation of China under Grant Nos.11471015,11571016Natural Science Foundation of Anhui Province under Grant No.1408085MA02
文摘Whitham–Broer–Kaup(WBK) equations in the shallow water small-amplitude regime is hereby under investigation. Nonlocal symmetry and Bcklund transformation are presented via the truncated Painlevé expansion.This residual symmetry is localised to Lie point symmetry by the properly enlarged system. The finite symmetry transformation of the prolonged system is computed. Based on the CTE method, WBK equations are linearized and new analytic interaction solutions between solitary waves and cnoidal waves are given with the aid of solutions for the linear equation.