期刊文献+
共找到74篇文章
< 1 2 4 >
每页显示 20 50 100
基于密集连接卷积神经网络的入侵检测技术研究 被引量:22
1
作者 缪祥华 单小撤 《电子与信息学报》 EI CSCD 北大核心 2020年第11期2706-2712,共7页
卷积神经网络在入侵检测技术领域中已得到广泛应用,一般地认为层次越深的网络结构其在特征提取、检测准确率等方面就越精确。但也伴随着梯度弥散、泛化能力不足且参数量大准确率不高等问题。针对上述问题,该文提出将密集连接卷积神经网... 卷积神经网络在入侵检测技术领域中已得到广泛应用,一般地认为层次越深的网络结构其在特征提取、检测准确率等方面就越精确。但也伴随着梯度弥散、泛化能力不足且参数量大准确率不高等问题。针对上述问题,该文提出将密集连接卷积神经网络(DCCNet)应用到入侵检测技术中,并通过使用混合损失函数达到提升检测准确率的目的。用KDD 99数据集进行实验,将实验结果与常用的LeNet神经网络、VggNet神经网络结构相比。分析显示在检测的准确率上有一定的提高,而且缓解了在训练过程中梯度弥散问题。 展开更多
关键词 入侵检测 卷积神经网络 密集连接 梯度弥散
下载PDF
自学习稀疏密集连接卷积神经网络图像分类方法 被引量:3
2
作者 吴鹏 林国强 +1 位作者 郭玉荣 赵振兵 《信号处理》 CSCD 北大核心 2019年第10期1747-1752,共6页
通道剪枝是深度模型压缩的主要方法之一。针对密集连接卷积神经网络中,每一层都接收其前部所有卷积层的输出特征图作为输入,但并非每个后部层都需要所有先前层的特征,网络中存在很大冗余的缺点。本文提出一种自学习剪枝密集连接网络中... 通道剪枝是深度模型压缩的主要方法之一。针对密集连接卷积神经网络中,每一层都接收其前部所有卷积层的输出特征图作为输入,但并非每个后部层都需要所有先前层的特征,网络中存在很大冗余的缺点。本文提出一种自学习剪枝密集连接网络中冗余通道的方法,得到稀疏密集连接卷积神经网络。首先,提出了一种衡量每个卷积层中每个输入特征图对输出特征图贡献度大小的方法,贡献度小的输入特征图即为冗余特征图;其次,介绍了通过自学习,网络分阶段剪枝冗余通道的训练过程,得到了稀疏密集连接卷积神经网络,该网络剪枝了密集连接网络中的冗余通道,减少了网络参数,降低了存储和计算量;最后,为了验证本文方法的有效性,在图像分类数据集CIFAR-10/100上进行了实验,在不牺牲准确率的前提下减小了模型冗余。 展开更多
关键词 剪枝冗余通道 自学习 稀疏化密集连接卷积神经网络 图像分类
下载PDF
密集连接扩张卷积神经网络的单幅图像去雾 被引量:7
3
作者 刘广洲 李金宝 +1 位作者 任东东 舒明雷 《计算机科学与探索》 CSCD 北大核心 2021年第1期185-194,共10页
针对大多数图像去雾算法模型参数估计准确性差及色彩失真等问题,提出了一种端到端的密集连接扩张卷积神经网络。首先,通过使用多层密集连接结构来增加网络的特征利用率,避免网络加深时的梯度消失现象。其次,通过在密集块中使用不同扩张... 针对大多数图像去雾算法模型参数估计准确性差及色彩失真等问题,提出了一种端到端的密集连接扩张卷积神经网络。首先,通过使用多层密集连接结构来增加网络的特征利用率,避免网络加深时的梯度消失现象。其次,通过在密集块中使用不同扩张率的扩张卷积,使网络在充分聚合上下文特征信息时不损失空间分辨率,并避免了网格伪影的产生。最后,为了提高算法的去雾能力,将该网络划分为多个阶段,并在每个阶段引入侧输出模块,从而获得更精确的特征信息。实验结果表明,所提出的去雾算法无论是在合成数据集上还是在真实数据集上都取得了较好的去雾效果,恢复的色彩更接近无雾图像,并且定量评价指标峰值信噪比(PSNR)和结构相似性(SSIM)均优于其他对比方法。 展开更多
关键词 图像去雾 卷积神经网络(CNN) 密集连接 扩张卷积
下载PDF
基于密集连接卷积神经网络的远程监督关系抽取 被引量:8
4
作者 钱小梅 刘嘉勇 程芃森 《计算机科学》 CSCD 北大核心 2020年第2期157-162,共6页
密集连接卷积神经网络(DenseNet)是一种新型深度卷积神经网络架构,通过建立不同层间的连接关系,来确保网络层与层间最大程度的信息传输。在文本远程监督关系抽取任务中,针对现有神经网络方法使用浅层网络提取特征的局限,设计了一种基于... 密集连接卷积神经网络(DenseNet)是一种新型深度卷积神经网络架构,通过建立不同层间的连接关系,来确保网络层与层间最大程度的信息传输。在文本远程监督关系抽取任务中,针对现有神经网络方法使用浅层网络提取特征的局限,设计了一种基于密集连接方式的深度卷积神经网络模型。该模型采用五层卷积神经网络构成的密集连接模块和最大池化层作为句子编码器,通过合并不同层次的词法、句法和语义特征,来帮助网络学习特征,从而获取输入语句更丰富的语义信息,同时减轻深度神经网络的梯度消失现象,使得网络对自然语言的表征能力更强。模型在NYT-Freebase数据集上的平均准确率达到了82.5%,PR曲线面积达到了0.43。实验结果表明,该模型能够有效利用特征,并提高远程监督关系抽取的准确率。 展开更多
关键词 深度学习 关系抽取 远程监督 卷积神经网络 密集连接
下载PDF
DenseCNN-ATT:实体关系抽取的密集连接卷积神经网络
5
作者 李雅欣 王佳英 +1 位作者 单菁 邵明阳 《计算机与数字工程》 2021年第12期2483-2489,共7页
在远程监督(Distant Supervision,DS)实体关系抽取任务中,采用远程监督的方式虽然可以产生大量的标注数据,但是这种方法产生的数据集充满大量的噪声数据,从而会降低关系抽取的性能。为此,我们针对现有深度学习使用浅层和单一深层神经网... 在远程监督(Distant Supervision,DS)实体关系抽取任务中,采用远程监督的方式虽然可以产生大量的标注数据,但是这种方法产生的数据集充满大量的噪声数据,从而会降低关系抽取的性能。为此,我们针对现有深度学习使用浅层和单一深层神经网络模型提取特征的局限,设计了一个融合注意力机制的密集连接卷积神经网络模型——DenseCNN-ATT,该模型采用五层卷积深度的CNN,构成密集连接卷积模块作为句子编码器,通过增加特征通道数量来提高特征传递,减少了特征梯度的消失现象;此外,为进一步减少噪声影响,论文将网络的最大池化结果融合注意力机制,通过强调句子权重,来提升关系抽取性能。该模型在NYT数据集上的平均准确率达到了83.2%,相比于目前效果较好的浅层网络PCNN+ATT和深层网络ResCNN-9提升了9%~11%。实验证明,该模型能够充分利用有效的实例关系,在综合性能上明显优于目前效果较好的主流模型。 展开更多
关键词 密集连接 关系抽取 注意力机制 卷积神经网络 远程监督
下载PDF
密集连接卷积神经网络:让人工智能拥有更强大脑 被引量:3
6
作者 黄高 《上海信息化》 2018年第10期39-42,共4页
人工智能技术经过半个多世纪的发展,伴随着这个领域的几度兴起和沉寂,终于在新的千年借助互联网、大数据、高性能芯片等技术,逐渐走向成熟和实用。相信不久的将来,随着深度神经网络等基础性技术的不断进步,人工智能将进入各个行业... 人工智能技术经过半个多世纪的发展,伴随着这个领域的几度兴起和沉寂,终于在新的千年借助互联网、大数据、高性能芯片等技术,逐渐走向成熟和实用。相信不久的将来,随着深度神经网络等基础性技术的不断进步,人工智能将进入各个行业,彻底变革人们的生产和生活方式。 展开更多
关键词 人工智能技术 卷积神经网络 大脑 连接 密集 生活方 互联网
下载PDF
基于DenseNet卷积神经网络的短期风电预测方法
7
作者 殷林飞 蒙雨洁 《综合智慧能源》 CAS 2024年第7期12-20,共9页
风能作为一种清洁、可再生的能源,在能源转型中扮演着至关重要的角色,准确预测风电出力对电力系统的安全高效运行非常重要,然而风速的波动性和随机性,对风电预测带来了挑战。为了提高风电预测的准确性,提出了一种基于DenseNet卷积神经... 风能作为一种清洁、可再生的能源,在能源转型中扮演着至关重要的角色,准确预测风电出力对电力系统的安全高效运行非常重要,然而风速的波动性和随机性,对风电预测带来了挑战。为了提高风电预测的准确性,提出了一种基于DenseNet卷积神经网络的短期风电预测模型。该模型通过精简DenseNet201网络得到了拥有出色的密集连接结构和适当深度、宽度的DenseNet160网络,不仅能缓解训练过程中梯度消失现象,还能通过密集连接将浅层的信息反映到深层,实现深度监督。基于巴西纳塔尔地区378 d的风力数据集,采用DenseNet160网络以及27种算法对未来一天的风力发电情况进行预测。结果表明:DenseNet160网络的平均绝对误差、均方误差以及平均绝对百分误差比其他算法分别降低了至少10.89%,4.98%,8.68%;同时,与使用相同数据集的混合经济模型相比,DenseNet160网络的MAE值小了25.56%。说明该模型能精准地拟合风力发电数据,获得可靠的风力预测结果。 展开更多
关键词 风电预测 可再生能源 DenseNet 卷积神经网络 密集连接 梯度消失
下载PDF
基于可变形密集卷积神经网络的布匹瑕疵检测 被引量:4
8
作者 庄集超 郭保苏 吴凤和 《计量学报》 CSCD 北大核心 2023年第2期178-185,共8页
针对传统布匹瑕疵检测方法无法适用于尺度变化大、面积占比小的瑕疵特征,提出一种基于可变形密集卷积神经网络模型。为了关注到图像中距离较远的特征信息,并避免捕获纹理信息,采用可变形卷积来增强特征的语义表达能力。通过在卷积层中... 针对传统布匹瑕疵检测方法无法适用于尺度变化大、面积占比小的瑕疵特征,提出一种基于可变形密集卷积神经网络模型。为了关注到图像中距离较远的特征信息,并避免捕获纹理信息,采用可变形卷积来增强特征的语义表达能力。通过在卷积层中设置卷积像素相对于中心像素各自的x,y方向偏移量,并利用反向传播训练偏移量以增加感受野的变形适应性。同时,采用密集连接的方式以保持模型不遗漏边缘瑕疵信息。最后,根据瑕疵类别预测和位置边框回归实现瑕疵的分类和定位检测。实验结果表明:该模型的平均检测精度和单类目标检测精度标准差分别为93.53%,2.5139,相比于其他方法更具有竞争力。 展开更多
关键词 计量学 布匹瑕疵检测 可变形卷积 密集连接 神经网络
下载PDF
对称式密集连接网络的地基云图分割方法 被引量:5
9
作者 沈慧想 夏旻 +1 位作者 施必成 刘佳 《计算机工程与应用》 CSCD 北大核心 2019年第17期207-213,共7页
为了提高地基云图分割的精度,提出一种对称式密集连接卷积神经网络的云图分割方法进行地基云图分割研究。提出的新的网络结构通过普通卷积层提取地基云图特征,通过连续的密集连接块和上采样模块对特征图进一步处理,通过并联方式融合网... 为了提高地基云图分割的精度,提出一种对称式密集连接卷积神经网络的云图分割方法进行地基云图分割研究。提出的新的网络结构通过普通卷积层提取地基云图特征,通过连续的密集连接块和上采样模块对特征图进一步处理,通过并联方式融合网络浅层和网络深层的特征图从而实现对地基云图精确的分割。其中,密集块中采用跨层连接的方式实现了网络中所用层的特征传递,使得云图特征得到复用,同时一定程度上减轻了训练过程中的梯度消失问题,通过并联浅层网络和深层网络的特征图实现了对地基云图的进一步精确分割。实验结果表明,该方法与其他用于地基云图分割的机器学习方法相比,能够提高地基云图的分割准确率,具有良好的泛化效果。 展开更多
关键词 深度学习 对称式密集连接卷积神经网络 图像分割 地基云图
下载PDF
特征融合型卷积神经网络的语义分割 被引量:4
10
作者 马冬梅 贺三三 +1 位作者 杨彩锋 严春满 《计算机工程与应用》 CSCD 北大核心 2020年第10期193-198,共6页
语义分割是对图像中的不同目标进行像素级的分割和分类,是图像处理领域中的一项重要研究,应用十分广泛。深度卷积神经网络在近几年的机器视觉研究中取得了显著成效。针对密集预测的语义分割任务,提出了一种基于VGGNet网络的方法。该方... 语义分割是对图像中的不同目标进行像素级的分割和分类,是图像处理领域中的一项重要研究,应用十分广泛。深度卷积神经网络在近几年的机器视觉研究中取得了显著成效。针对密集预测的语义分割任务,提出了一种基于VGGNet网络的方法。该方法在深层特征图像中融合了浅层信息,且采用并行的不同采样率的空洞卷积进行特征提取与融合,更有效地提取不同层的特征和上下文信息,从而提高语义分割精度。采用全连接条件随机场优化图像边界,进一步提高语义分割的精度。该方法在PASCAL VOC 2012语义分割任务测试集中取得了71.3%mIOU的结果,优于之前基于VGGNet的主要经典方法。 展开更多
关键词 语义分割 卷积神经网络 机器视觉 密集预测 连接条件随机场
下载PDF
一种密集卷积神经网络的电视语音响度补偿方法
11
作者 谢仁礼 秦宇 罗雪倩 《电声技术》 2021年第6期18-24,共7页
现有的电视语音响度补偿是针对人耳听阈和听力障碍的损失进行均衡补偿,这类方法会放大同频段的非人声。针对这类方法的缺陷,提出利用深度学习语音增强技术将人声从电视节目音频中分离出来,使用户直接听到清晰人声。对此提出密集连接卷... 现有的电视语音响度补偿是针对人耳听阈和听力障碍的损失进行均衡补偿,这类方法会放大同频段的非人声。针对这类方法的缺陷,提出利用深度学习语音增强技术将人声从电视节目音频中分离出来,使用户直接听到清晰人声。对此提出密集连接卷积网络(Densely Connected Convolutional Network,DenseNet)结合卷积神经网络编解码器(Convolutional Encoder-Decoder,CED)结构的新型神经网络语音增强模型。该模型量级较轻,能够在电视上实时运行,与同量级网络参数的卷积神经网络(Convolutional Neural Networks,CNN)语音增强模型相比,效果更好且模型更小。 展开更多
关键词 密集连接卷积神经网络 卷积编解码器 实时语音增强 残差连接
下载PDF
渐进式逐层密集连接网络图像超分辨率重建
12
作者 韩小伟 《互联网周刊》 2024年第2期31-33,共3页
针对现有基于深度神经网络的图像超分辨率重建,存在未完全考虑层次特征信息的提取和利用问题,本文提出了一种渐进式逐层密集连接网络。通过设计一种逐层密集连接特征融合块,以挖掘和利用图像中不同层次的特征信息,并且利用一种渐进式特... 针对现有基于深度神经网络的图像超分辨率重建,存在未完全考虑层次特征信息的提取和利用问题,本文提出了一种渐进式逐层密集连接网络。通过设计一种逐层密集连接特征融合块,以挖掘和利用图像中不同层次的特征信息,并且利用一种渐进式特征融合机制,在全局层次上融合从逐层密集连接特征融合块中提取到的特征信息,促进图像纹理细节的重建。实验结果表明,所提方法与其他方法相比,在客观评价指标与主观视觉效果上有着更加显著的表现。 展开更多
关键词 超分辨率 卷积神经网络 层次特征 逐层密集连接 渐进特征融合
下载PDF
基于改进卷积神经网络的极光图像分类算法研究 被引量:8
13
作者 李彦枝 陈昌红 谢晓芳 《南京邮电大学学报(自然科学版)》 北大核心 2019年第6期86-93,共8页
极光包含丰富的磁层和日地电磁活动以及能量耦合等空间物理信息,是一种自然放光现象。对极光图像的正确分类有助于探索太阳与地球及地球自身磁场的奥秘。文中针对极光图像分类问题提出一种基于神经网络改进的算法,首先采用迁移学习将在... 极光包含丰富的磁层和日地电磁活动以及能量耦合等空间物理信息,是一种自然放光现象。对极光图像的正确分类有助于探索太阳与地球及地球自身磁场的奥秘。文中针对极光图像分类问题提出一种基于神经网络改进的算法,首先采用迁移学习将在大规模数据集上训练过的VGG16网络用于极光数据库,然后结合VGG16和密集连接的思想提出一种改进的Dense-VGG网络,用该网络提取极光图像的特征,并实现极光图像的自动分类。在中国北极黄河站拍摄的两个极光数据库上进行了实验,其中8 001幅准确率达到96.54%,38 044幅准确率达到98.99%,证明该算法能有效提高极光图像分类准确率。 展开更多
关键词 极光图像 卷积神经网络 特征提取 密集连接 分类
下载PDF
基于深度卷积神经网络的心音分类算法 被引量:5
14
作者 孟丽楠 谢红薇 +1 位作者 宁晨 付阳 《计算机测量与控制》 2021年第8期211-217,222,共8页
针对现有心音分类算法普适性差、依赖于对基本心音的精确分割、分类模型结构单一等问题,提出采用大量未经过精确分割的心音二维特征图训练深度卷积神经网络(CNN)的方法;首先采用滑动窗口方法和梅尔频率系数对心音信号进行预处理,得到大... 针对现有心音分类算法普适性差、依赖于对基本心音的精确分割、分类模型结构单一等问题,提出采用大量未经过精确分割的心音二维特征图训练深度卷积神经网络(CNN)的方法;首先采用滑动窗口方法和梅尔频率系数对心音信号进行预处理,得到大量未经过精确分割的心音特征图;然后利用深度CNN模型对心音特征图进行训练和测试;根据卷积层间连接方式的不同,设计了3种深度CNN模型:基于单一连接的卷积神经网络、基于跳跃连接的卷积神经网络、基于密集连接的卷积神经网络;实验结果表明,基于密集连接的卷积神经网络比其他两种网络具备更大的潜力;与其他心音分类算法相比,该算法不依赖于对基本心音的精确分割,且在分类准确率、敏感性和特异性方面均有提升。 展开更多
关键词 心音分类 梅尔频率系数 卷积神经网络 密集连接
下载PDF
GSDCPeleeNet:基于PeleeNet的高效轻量化卷积神经网络 被引量:2
15
作者 倪伟健 秦会斌 《电子技术应用》 2021年第3期22-26,30,共6页
卷积神经网络在各个领域都发挥着重要的作用,尤其是在计算机视觉领域,但过多的参数数量和计算量限制了它在移动设备上的应用。针对上述问题,结合分组卷积方法和参数共享、密集连接的思想,提出了一种新的卷积算法Group-Shard-Dense-Chann... 卷积神经网络在各个领域都发挥着重要的作用,尤其是在计算机视觉领域,但过多的参数数量和计算量限制了它在移动设备上的应用。针对上述问题,结合分组卷积方法和参数共享、密集连接的思想,提出了一种新的卷积算法Group-Shard-Dense-Channle-Wise。利用该卷积算法,在PeleeNet网络结构的基础上,改进出一种高效的轻量化卷积神经网络——GSDCPeleeNet。与其他卷积神经网络相比,该网络在具有更少参数的情况下,几乎不损失识别精度甚至识别精度更高。该网络选取1×1卷积层中卷积核信道方向上的步长s作为超参数,调整并适当地选取该超参数,可以在网络参数量更小的情况下,拥有更好的图像分类效果。 展开更多
关键词 图像分类 卷积神经网络 轻量化 密集连接 参数共享 分组卷积
下载PDF
结合密集神经网络与长短时记忆模型的中文识别 被引量:3
16
作者 张艺玮 赵一嘉 +1 位作者 王馨悦 董兰芳 《计算机系统应用》 2018年第11期35-41,共7页
文本图像识别是计算机视觉领域一项重要任务,而其中的中文识别因种类繁多、结构复杂以及类间相近等特点很具挑战性.为改善这一问题,使用文本行端到端的识别模型.首次提出利用密集卷积神经网络(DenseNet)提取文本图像底层特征,同时避免... 文本图像识别是计算机视觉领域一项重要任务,而其中的中文识别因种类繁多、结构复杂以及类间相近等特点很具挑战性.为改善这一问题,使用文本行端到端的识别模型.首次提出利用密集卷积神经网络(DenseNet)提取文本图像底层特征,同时避免手工设计、统计图像特征的繁琐;将整行图像特征直接送入双向长短时记忆模型(BLSTM)进行局部相关性分析,减少字符定位分割这一步骤;最后采用时域连接模型(CTC)解码获得识别的文本信息.实验表明所提出的模型可以高效的进行图像文本行的识别,并对图像的多种形变具有较好的鲁棒性. 展开更多
关键词 中文识别 端到端 密集卷积神经网络 双向长短时记忆模型 时域连接模型
下载PDF
基于轻量卷积神经网络的车牌定位识别方法 被引量:1
17
作者 程闯 梅磊 谭昕 《武汉理工大学学报(交通科学与工程版)》 2023年第3期414-420,共7页
文中提出了一种新型基于轻量卷积神经网络的车辆车牌定位识别方法.采用基于改进的YOLOv3算法对车牌进行定位,基于免分割的轻量卷积神经网络LPRNet识别车牌字符.在车牌定位方面,改进YOLOv3网络的特征提取网络以降低设备要求,同时加入密... 文中提出了一种新型基于轻量卷积神经网络的车辆车牌定位识别方法.采用基于改进的YOLOv3算法对车牌进行定位,基于免分割的轻量卷积神经网络LPRNet识别车牌字符.在车牌定位方面,改进YOLOv3网络的特征提取网络以降低设备要求,同时加入密集连接网络,增加对浅层特征信息的重复利用;在损失函数方面,引入DIOU损失函数,加快网络收敛以提高YOLOv3网络的定位精度;在车牌字符识别方面,采用基于免分割轻量卷积神经网络识别车牌字符,准确率高且保证了网络的轻量.结果表明:改进的YOLOv3网络算法的平均正确率降低了2.2%在CPU上检测速度达到了35帧/s,结合字符识别网络,总体检测速度达到27帧/s,满足实时性检测要求. 展开更多
关键词 轻量化卷积神经网络 车牌识别与定位 密集连接 字符识别
下载PDF
一种基于双通道的水下图像增强卷积神经网络
18
作者 王树林 杨建民 +1 位作者 卢昌宇 刘路平 《海洋工程》 CSCD 北大核心 2023年第6期158-170,共13页
近年来各国对于海洋生物的保护意识日益强烈,用来监测海洋生物生存状态的水下机器人装备的研发是保护海洋生物资源的关键。水下相机是这类机器人在水下进行海洋生物监测时的光学感知设备。然而水下环境复杂,拍摄到的图像模糊不清,为解... 近年来各国对于海洋生物的保护意识日益强烈,用来监测海洋生物生存状态的水下机器人装备的研发是保护海洋生物资源的关键。水下相机是这类机器人在水下进行海洋生物监测时的光学感知设备。然而水下环境复杂,拍摄到的图像模糊不清,为解决水下图像模糊等问题,提出了一种基于双通道的水下图像增强卷积神经网络。在网络的编码器中采用双通道结构,其中一个通道采用了密集连接和高效通道注意力机制,提取水下图像的细节特征,另一个通道采用多尺度结构,提取原始图像的多尺度语义特征。接着,在网络中引入残差注意力模块和自适应特征融合模块,进一步优化了特征。最后将优化后的特征输入解码器重建出增强后的水下图像。试验表明:提出的网络算法在UIQM指标和Entropy指标上分别为3.0056和7.6547,较第二名的算法分别高出0.0975和0.1232。 展开更多
关键词 卷积神经网络 水下图像增强 损失函数 密集连接 注意力机制 多尺度
下载PDF
基于卷积神经网络和频率域特征的视频拷贝检测方法 被引量:1
19
作者 石慧杰 《高技术通讯》 EI CAS 北大核心 2019年第12期1201-1205,共5页
为了解决视频特征鲁棒性差、计算复杂度高等问题,提出一种新的视频拷贝检测方法。该算法将深度卷积网络特征和传统手工特征相结合,提升特征检测的维数,提升检测准确度。方法首先使用密集连接卷积网络(DenseNet)提取关键帧的深度特征,并... 为了解决视频特征鲁棒性差、计算复杂度高等问题,提出一种新的视频拷贝检测方法。该算法将深度卷积网络特征和传统手工特征相结合,提升特征检测的维数,提升检测准确度。方法首先使用密集连接卷积网络(DenseNet)提取关键帧的深度特征,并对关键帧进行离散余弦变换(DCT)提取系数特征,然后使用基于典型相关分析(CCA)的特征融合算法将2种特征进行有效融合,最后使用融合特征进行特征匹配。在标准数据集上的实验表明,本文提出的算法检测效果较好,在常见的拷贝变化下可以得到更高的检测精度。该算法可以作为一种有效的数字视频版权保护技术应用于数字视频的监管领域。 展开更多
关键词 视频拷贝检测 特征表示 卷积神经网络(CNN) 典型相关分析(CCA) 离散余弦变换(DCT) 密集连接卷积网络(DenseNet)
下载PDF
多维加权密集连接卷积网络的卫星云图云检测 被引量:5
20
作者 夏旻 施必成 +1 位作者 刘佳 刘万安 《计算机工程与应用》 CSCD 北大核心 2018年第20期184-189,196,共7页
云检测是多光谱卫星云图分析的前提。传统云检测方法不能很好地对多光谱卫星云图进行特征表示,导致了云检测不是很准确。卷积神经网络虽然能有效地提取特征,但训练时会产生梯度扩散,训练效率低,优化困难等问题。针对这些问题,提出多维... 云检测是多光谱卫星云图分析的前提。传统云检测方法不能很好地对多光谱卫星云图进行特征表示,导致了云检测不是很准确。卷积神经网络虽然能有效地提取特征,但训练时会产生梯度扩散,训练效率低,优化困难等问题。针对这些问题,提出多维加权密集连接卷积神经网络模型实现对多光谱卫星云图的云检测。跨层连接能够实现网络中所有层之间的信息流,从而减少训练过程中的梯度消失导致收敛困难的问题。特征图之间连接的权值不同使得网络能够更高效地利用特征信息。通过实验结果对比,该模型可以很好地提取云图特征,提高多光谱云图检测的准确率,具有更好的泛化性能和优化效率。 展开更多
关键词 多维加权密集连接 卷积神经网络 多光谱卫星云图 云检测
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部