The line intensities of 001-000 transition of the asymptotic asymmetric-top Oa molecule at several temperatures are calculated by directly calculating the partition functions and regarding the rotationless transition ...The line intensities of 001-000 transition of the asymptotic asymmetric-top Oa molecule at several temperatures are calculated by directly calculating the partition functions and regarding the rotationless transition dipole moment squared as a constant. The calculated values of the total internM partition sums (TIPS) are consistent with the data of HITRAN database with -0.61% at 296 K. The calculated line intensity data at 500 K and 3000 K are also in excellent agreement with the data in HITRAN database with less than 0.659% and 5.458% at 500 K and 3000 K, which provide a strong support for the calculations of partition function and fine intensity at high temperature. Then we extend the calculation to higher temperatures. The line intensities and simulated spectra of v3 band of the asymptotic asymmetric-top O3 molecule at 4000 and 5000 K are reported. The results are of significance for the studying of the molecular high-temperature spectrum including experimental measurements and theoretical calculations.展开更多
The object of this paper is the evaluation of the seismic response of reinforced concrete frames designed according to the DDBD (direct displacement-based design) approach. The great part of research works about DDB...The object of this paper is the evaluation of the seismic response of reinforced concrete frames designed according to the DDBD (direct displacement-based design) approach. The great part of research works about DDBD has been dedicated to planar frames, but recently also some proposals for 3D structures have been presented, in particular for wall structures. This paper will give a further contribution to the extension of the procedure for the case of plan-asymmetric RC (reinforced concrete) frames. The extended methodology is aimed at accounting for the floor rotations on the basis of a given lateral strength distribution along the plan. The procedure was applied to two plan-asymmetric RC frames, characterized by the same geometry but different lateral strength distributions along the plan. The seismic behavior of the designed frames was studied by adopting a fiber model and by performing pushover and nonlinear dynamic analyses.展开更多
A sensor array system formed by arranging four asymmetric distributed-feedback fiber lasers (DFB-FL) in ascending order according to their slope efficiencies was proposed. The output flatness could be effectively im...A sensor array system formed by arranging four asymmetric distributed-feedback fiber lasers (DFB-FL) in ascending order according to their slope efficiencies was proposed. The output flatness could be effectively improved with the application of asymmetric DFB-FLs. The last element had almost the same output with the others although it obtained the smallest pump power. The relative intensity noise (RIN) and relaxation oscillation frequency of the sensor array were also analyzed. It is found that the relaxation oscillation frequency of a certain DFB-FL was relevant to its relative position in the array. And the RIN of a certain DFB-FL was always affected by the other elements in the array, which was not dependent on the order of their arrangement.展开更多
Galileo mission detected the magnetic anomalies originated from Galilean moons.These anomalies are likely generated in the moons' interiors,under the influence of a strong ambient Jovian field.Among various possib...Galileo mission detected the magnetic anomalies originated from Galilean moons.These anomalies are likely generated in the moons' interiors,under the influence of a strong ambient Jovian field.Among various possible generation mechanisms of the anomalies,we focus on magneto-convection and dynamos in the interiors via numerical simulation.To mimic the electromagnetic environment of the moons,we introduce in our numerical model an external uniform magnetic field B0 with a fixed orientation but varying field strength.Our results show that a finite B0 can substantially alter the dynamo processes inside the core.When the ambient field strength B0 increases to approximately 40% of the field generated by the pure dynamo action,the convective state in the core changes significantly:the convective flow decreases by 80% in magnitude,but the differential rotation becomes stronger in much of the fluid layer,leading to a stronger field generated in the core.The field morphologies inside the core tend to align with the ambient field,while the flow patterns show the symmetry-breaking effect under the influence of B0.Furthermore,the generated field tends to be temporally more stable.展开更多
The directional drifting of particles/molecules with broken symmetry has received increasing attention. Through molecular dynamics simulations, we investigate the effects of various solvents on the time-dependent dire...The directional drifting of particles/molecules with broken symmetry has received increasing attention. Through molecular dynamics simulations, we investigate the effects of various solvents on the time-dependent directional drifting of a particle with broken symmetry. Our simulations show that the distance of directional drift of the asymmetrical particle is reduced while the ratio of the drift to the mean displacement of the particle is enhanced with increasing mass, size, and interaction strength of the solvent atoms in a short time range. Among the parameters considered, solvent atom size is a particularly influential factor for enhancing the directional drift of asymmetrical particles, while the effects of the interaction strength and the mass of the solvent atoms are relatively weaker. These findings are of great importance to the understanding and control of the Brownian motion of particles in various physical, chemical, and biological processes within finite time spans.展开更多
基金supported by National Natural Science Foundation of China under Grant No.10574096the Major Program for Basic Research of National Security of China under Grant No.5134202-04the Natural Science Foundation of the Bureau of Education of Guizhou Province under Grant No.2006204
文摘The line intensities of 001-000 transition of the asymptotic asymmetric-top Oa molecule at several temperatures are calculated by directly calculating the partition functions and regarding the rotationless transition dipole moment squared as a constant. The calculated values of the total internM partition sums (TIPS) are consistent with the data of HITRAN database with -0.61% at 296 K. The calculated line intensity data at 500 K and 3000 K are also in excellent agreement with the data in HITRAN database with less than 0.659% and 5.458% at 500 K and 3000 K, which provide a strong support for the calculations of partition function and fine intensity at high temperature. Then we extend the calculation to higher temperatures. The line intensities and simulated spectra of v3 band of the asymptotic asymmetric-top O3 molecule at 4000 and 5000 K are reported. The results are of significance for the studying of the molecular high-temperature spectrum including experimental measurements and theoretical calculations.
文摘The object of this paper is the evaluation of the seismic response of reinforced concrete frames designed according to the DDBD (direct displacement-based design) approach. The great part of research works about DDBD has been dedicated to planar frames, but recently also some proposals for 3D structures have been presented, in particular for wall structures. This paper will give a further contribution to the extension of the procedure for the case of plan-asymmetric RC (reinforced concrete) frames. The extended methodology is aimed at accounting for the floor rotations on the basis of a given lateral strength distribution along the plan. The procedure was applied to two plan-asymmetric RC frames, characterized by the same geometry but different lateral strength distributions along the plan. The seismic behavior of the designed frames was studied by adopting a fiber model and by performing pushover and nonlinear dynamic analyses.
文摘A sensor array system formed by arranging four asymmetric distributed-feedback fiber lasers (DFB-FL) in ascending order according to their slope efficiencies was proposed. The output flatness could be effectively improved with the application of asymmetric DFB-FLs. The last element had almost the same output with the others although it obtained the smallest pump power. The relative intensity noise (RIN) and relaxation oscillation frequency of the sensor array were also analyzed. It is found that the relaxation oscillation frequency of a certain DFB-FL was relevant to its relative position in the array. And the RIN of a certain DFB-FL was always affected by the other elements in the array, which was not dependent on the order of their arrangement.
基金supported by National Natural Science Foundation of China (Grant No. 40328006)
文摘Galileo mission detected the magnetic anomalies originated from Galilean moons.These anomalies are likely generated in the moons' interiors,under the influence of a strong ambient Jovian field.Among various possible generation mechanisms of the anomalies,we focus on magneto-convection and dynamos in the interiors via numerical simulation.To mimic the electromagnetic environment of the moons,we introduce in our numerical model an external uniform magnetic field B0 with a fixed orientation but varying field strength.Our results show that a finite B0 can substantially alter the dynamo processes inside the core.When the ambient field strength B0 increases to approximately 40% of the field generated by the pure dynamo action,the convective state in the core changes significantly:the convective flow decreases by 80% in magnitude,but the differential rotation becomes stronger in much of the fluid layer,leading to a stronger field generated in the core.The field morphologies inside the core tend to align with the ambient field,while the flow patterns show the symmetry-breaking effect under the influence of B0.Furthermore,the generated field tends to be temporally more stable.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11175230 and 11474299)Innovation Program of the Shanghai Municipality Education Commission, China (Grant No. 14ZZ095)Shanghai Supercomputer Center and Supercomputing Center of the Chinese Academy of Sciences
文摘The directional drifting of particles/molecules with broken symmetry has received increasing attention. Through molecular dynamics simulations, we investigate the effects of various solvents on the time-dependent directional drifting of a particle with broken symmetry. Our simulations show that the distance of directional drift of the asymmetrical particle is reduced while the ratio of the drift to the mean displacement of the particle is enhanced with increasing mass, size, and interaction strength of the solvent atoms in a short time range. Among the parameters considered, solvent atom size is a particularly influential factor for enhancing the directional drift of asymmetrical particles, while the effects of the interaction strength and the mass of the solvent atoms are relatively weaker. These findings are of great importance to the understanding and control of the Brownian motion of particles in various physical, chemical, and biological processes within finite time spans.